BmSPI38同型串联多聚体在大肠杆菌中的表达和抗真菌活性
作者:
基金项目:

国家自然科学基金(31702187);陕西省自然科学基础研究计划重点项目(2022JZ-12);陕西省教育厅重点科学研究计划项目(22JY017,20JY007);陕西理工大学科研项目(SLGKYXM2202)


Expression of BmSPI38 tandem multimers in Escherichia coli and its antifungal activity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在通过蛋白质工程手段获得结构均一性更好、活性更高、抗真菌能力更强的家蚕蛋白酶抑制剂BmSPI38的串联多聚体蛋白。利用原核表达技术获得BmSPI38串联多聚体蛋白,并通过蛋白酶抑制剂胶内活性染色、蛋白酶抑制实验和真菌生长抑制实验等探讨串联多聚体化对BmSPI38的结构均一性、抑制活性和抗真菌能力的影响。活性染色结果表明,基于多肽柔性接头的串联表达能够极大提高BmSPI38蛋白的结构均一性。蛋白酶抑制实验表明,基于接头的串联三聚体化和四聚体化能提高BmSPI38对微生物蛋白酶的抑制能力。孢子萌发实验表明,His6-SPI38L-tetramer对球孢白僵菌(Beauveria bassiana)分生孢子萌发的抑制能力显著强于His6-SPI38-monomer。真菌生长抑制实验显示,能够通过串联多聚体化来增强BmSPI38对酿酒酵母(Saccharomyces cerevisiae)和白色念珠菌(Candida albicans)的抑制能力。本研究成功实现BmSPI38的串联多聚体在大肠杆菌中的异源活性表达,并证实可通过串联多聚体化来增强BmSPI38的结构均一性和抗真菌能力,不仅可为培育抗真菌转基因家蚕提供重要的理论依据和新策略,还将推动BmSPI38的外源生产及在医疗领域的应用。

    Abstract:

    The aim of this study was to prepare tandem multimeric proteins of BmSPI38, a silkworm protease inhibitor, with better structural homogeneity, higher activity and stronger antifungal ability by protein engineering. The tandem multimeric proteins of BmSPI38 were prepared by prokaryotic expression technology. The effects of tandem multimerization on the structural homogeneity, inhibitory activity and antifungal ability of BmSPI38 were explored by in-gel activity staining of protease inhibitor, protease inhibition assays and fungal growth inhibition experiments. Activity staining showed that the tandem expression based on the peptide flexible linker greatly improved the structural homogeneity of BmSPI38 protein. Protease inhibition experiments showed that the tandem trimerization and tetramerization based on the linker improved the inhibitory ability of BmSPI38 to microbial proteases. Conidial germination assays showed that His6-SPI38L-tetramer had stronger inhibition on conidial germination of Beauveria bassiana than that of His6-SPI38-monomer. Fungal growth inhibition assay showed that the inhibitory ability of BmSPI38 against Saccharomyces cerevisiae and Candida albicans could be enhanced by tandem multimerization. The present study successfully achieved the heterologous active expression of the silkworm protease inhibitor BmSPI38 in Escherichia coli, and confirmed that the structural homogeneity and antifungal ability of BmSPI38 could be enhanced by tandem multimerization. This study provides important theoretical basis and new strategies for cultivating antifungal transgenic silkworm. Moreover, it may promote the exogenous production of BmSPI38 and its application in the medical field.

    参考文献
    [1] XIA QY, ZHOU ZY, LU C, CHENG DJ, DAI FY, LI B, ZHAO P, ZHA XF, CHENG TC, CHAI CL, PAN GQ, XU JS, LIU C, LIN Y, QIAN JF, HOU Y, WU ZL, LI GR, PAN MH, LI CF, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science (New York, NY), 2004, 306(5703):1937-1940.
    [2] XIA QY, CHENG DJ, DUAN J, WANG GH, CHENG TC, ZHA XF, LIU C, ZHAO P, DAI FY, ZHANG Z, HE NJ, ZHANG L, XIANG ZH. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori[J]. Genome Biology, 2007, 8(8):R162.
    [3] DUAN J, LI RQ, CHENG DJ, FAN W, ZHA XF, CHENG TC, WU YQ, WANG J, MITA K, XIANG ZH, XIA QY. SilkDB v2.0:a platform for silkworm (Bombyx mori) genome biology[J]. Nucleic Acids Research, 2010, 38(suppl_1):D453-D456.
    [4] XIA QY, LI S, FENG QL. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori[J]. Annual Review of Entomology, 2014, 59:513-536.
    [5] XIONG Q, XIE YP, ZHU YM, XUE JL, LI J, FAN RJ. Morphological and ultrastructural characterization of Carposina sasakii larvae (Lepidoptera:Carposinidae) infected by Beauveria bassiana (Ascomycota:Hypocreales:Clavicipitaceae)[J]. Micron, 2013, 44:303-311.
    [6] CHARNLEY AK. Physiological Aspects of Destructive Pathogenesis in Insects by Fungi:a Speculative Review[M]. London:Cambridge University Press, 1984:229-270.
    [7] GOETTEL MS, LEGER RJS, RIZZO NW, STAPLES RC, ROBERTS DW. Ultrastructural localization of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle[J]. Journal of General Microbiology, 1989, 135(8):2233-2239.
    [8] ST LEGER RJ. The role of cuticle-degrading proteases in fungal pathogenesis of insects[J]. Canadian Journal of Botany, 1995, 73(S1):1119-1125.
    [9] CHARNLEY AK. Fungal pathogens of insects:cuticle degrading enzymes and toxin[J]. Advances in Botanical Research, 2003, 40:241-321.
    [10] ST LEGER R, JOSHI L, BIDOCHKA MJ, ROBERTS DW. Construction of an improved mycoinsecticide overexpressing a toxic protease[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(13):6349-6354.
    [11] ZHANG YJ, FENG MG, FAN YH, LUO ZB, YANG XY, WU D, PEI Y. A cuticle-degrading protease (CDEP-1) of Beauveria bassiana enhances virulence[J]. Biocontrol Science and Technology, 2008, 18(6):543-555.
    [12] YANG JK, ZHAO XN, LIANG LM, XIA ZY, LEI LP, NIU XM, ZOU CG, ZHANG KQ. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus[J]. Applied Microbiology and Biotechnology, 2011, 89(6):1895-1903.
    [13] KANOST MR. Serine proteinase inhibitors in arthropod immunity[J]. Developmental & Comparative Immunology, 1999, 23(4-5):291-301.
    [14] FULLAONDO A, GARCÍA-SÁNCHEZ S, SANZ-PARRA A, RECIO E, LEE SY, GUBB D. Spn1 regulates the GNBP3-dependent Toll signaling pathway in Drosophila melanogaster[J]. Molecular and Cellular Biology, 2011, 31(14):2960-2972.
    [15] CERENIUS L, KAWABATA SI, LEE BL, NONAKA M, SÖDERHÄLL K. Proteolytic cascades and their involvement in invertebrate immunity[J]. Trends in Biochemical Sciences, 2010, 35(10):575-583.
    [16] CHEN KK, LU ZQ. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori[J]. Developmental and Comparative Immunology, 2018, 83:3-11.
    [17] 李游山, 路庆君, 杨玺, 张杰, 罗竹星, 夏庆友, 赵萍. 家蚕抗真菌因子BmSPI39对球孢白僵菌入侵的表达响应[J]. 昆虫学报, 2021, 64(1):61-69. LI YS, LU QJ, YANG X, ZHANG J, LUO ZX, XIA QY, ZHAO P. Expression of the fungal-resistance factor BmSPI39 in Bombyx mori in response to Beauveria bassiana invasion[J]. Acta Entomologica Sinica, 2021, 64(1):61-69(in Chinese).
    [18] LI YS, ZHAO P, LIU SP, DONG ZM, CHEN JP, XIANG ZH, XIA QY. A novel protease inhibitor in Bombyx mori is involved in defense against Beauveria bassiana[J]. Insect Biochemistry and Molecular Biology, 2012, 42(10):766-775.
    [19] LI YS, ZHAO P, LIU HW, GUO XM, HE HW, ZHU R, XIANG ZH, XIA QY. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi[J]. Insect Biochemistry and Molecular Biology, 2015, 57:11-19.
    [20] LI YS, LIU HW, ZHU R, XIA QY, ZHAO P. Protease inhibitors in Bombyx mori silk might participate in protecting the pupating larva from microbial infection[J]. Insect Science, 2016, 23(6):835-842.
    [21] DONG ZM, XIA QY, ZHAO P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori[J]. International Journal of Biological Macromolecules, 2023, 224:68-78.
    [22] LI YS, LIU HW, ZHU R, XIA QY, ZHAO P. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases[J]. Peptides, 2016, 86:13-23.
    [23] LI YS, DONG ZM, LIU HW, ZHU R, BAI Y, XIA QY, ZHAO P. The fungal-resistance factors BmSPI38 and BmSPI39 predominantly exist as tetramers, not monomers, in Bombyx mori[J]. Insect Molecular Biology, 2018, 27(6):686-697.
    [24] LI YS, WEI M, ZHANG J, ZHU R, WANG Y, ZHANG ZF, CHEN CQ, ZHAO P. Amino acid substitutions at P1 position change the inhibitory activity and specificity of protease inhibitors BmSPI38 and BmSPI39 from Bombyx mori[J]. Molecules, 2023, 28(5):2073.
    [25] JONGSMA MA, BAKKER PL, STIEKEMA WJ. Quantitative determination of serine proteinase inhibitor activity using a radial diffusion assay[J]. Analytical Biochemistry, 1993, 212(1):79-84.
    [26] YAKOBY N, RASKIN I. A simple method to determine trypsin and chymotrypsin inhibitory activity[J]. Journal of Biochemical and Biophysical Methods, 2004, 59(3):241-251.
    [27] WRIGGERS W, CHAKRAVARTY S, JENNINGS PA. Control of protein functional dynamics by peptide linkers[J]. Peptide Science, 2005, 80(6):736-746.
    [28] ZHAO HL, YAO XQ, XUE C, WANG Y, XIONG XH, LIU ZM. Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering[J]. Protein Expression and Purification, 2008, 61(1):73-77.
    [29] MACEDO MLR, DIZ FILHO EBS, FREIRE MGM, OLIVA MLV, SUMIKAWA JT, TOYAMA MH, MARANGONI S. A trypsin inhibitor from Sapindus saponaria L. seeds:purification, characterization, and activity towards pest insect digestive enzyme[J].The Protein Journal, 2011, 30(1):9-19.
    [30] DOWNING MR, BLOOM JW, MANN KG. Comparison of the inhibition of thrombin by three plasma protease inhibitors[J]. Biochemistry, 1978, 17(13):2649-2653.
    [31] ELLIS V, SCULLY M, MACGREGOR I, KAKKAR V. Inhibition of human factor Xa by various plasma protease inhibitors[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1982, 701(1):26-31.
    [32] ZOU Z, JIANG HB. Manduca sexta serpin-6 regulates immune serine proteinases PAP-3 and HP8[J]. Journal of Biological Chemistry, 2005, 280(14):14341-14348.
    [33] TANG HP, KAMBRIS Z, LEMAITRE B, HASHIMOTO C. A serpin that regulates immune melanization in the respiratory system of Drosophila[J]. Developmental Cell, 2008, 15(4):617-626.
    [34] 杨玺, 张杰, 李游山. 蛋白酶抑制剂的多聚体化对其生理功能的影响[J]. 生理科学进展, 2021, 52(3):236-240. YANG X, ZHANG J, LI YS. Effect of multimerization of protease inhibitors on their physiological functions[J]. Progress in Physiological Sciences, 2021, 52(3):236-240(in Chinese).
    [35] GILLMOR SA, TAKEUCHI T, YANG SQ, CRAIK CS, FLETTERICK RJ. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases[J]. Journal of Molecular Biology, 2000, 299(4):993-1003.
    [36] NAGY ZA, SZAKÁCS D, BOROS E, HÉJA D, VÍGH E, SÁNDOR N, JÓZSI M, OROSZLÁN G, DOBÓ J, GÁL P, PÁL G. Ecotin, a microbial inhibitor of serine proteases, blocks multiple complement dependent and independent microbicidal activities of human serum[J]. PLoS Pathogens, 2019, 15(12):e1008232.
    [37] GARCIA FB, DINIZ CABRAL A, FUHLENDORF MM, DA CRUZ GF, dos SANTOS JV, FERREIRA GC, de REZENDE BRC, SANTANA CM, PUZER L, DAISHI SASAKI S, GARCIA W, SPERANÇA MA. Functional and structural characterization of an ecotin-like serine protease inhibitor from Trypanosoma cruzi[J]. International Journal of Biological Macromolecules, 2020, 151:459-466.
    [38] EKIEL I, ABRAHAMSON M. Folding-related dimerization of human cystatin C[J]. Journal of Biological Chemistry, 1996, 271(3):1314-1321.
    [39] EKIEL I, ABRAHAMSON M, FULTON DB, LINDAHL P, STORER AC, LEVADOUX W, LAFRANCE M, LABELLE S, POMERLEAU Y, GROLEAU D, LESAUTEUR L, GEHRING K. NMR structural studies of human cystatin C dimers and monomers[J]. Journal of Molecular Biology, 1997, 271(2):266-277.
    [40] BRAND GD, SALBO R, JØRGENSEN TJD, BLOCH C JR, ERBA EB, ROBINSON CV, TANJONI I, M MOURA-DA-SILVA A, ROEPSTORFF P, DOMONT GB, PERALES J, VALENTE RH, NEVES-FERREIRA AGC. The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance[J]. Journal of Mass Spectrometry, 2012, 47(5):567-573.
    [41] CHAPEAUROUGE A, MARTINS SM, HOLUB O, ROCHA SLG, VALENTE RH, NEVES-FERREIRA AGC, FERREIRA ST, DOMONT GB, PERALES J. Conformational plasticity of DM43, a metalloproteinase inhibitor from Didelphis marsupialis:chemical and pressure-induced equilibrium (un)folding studies[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2009, 1794(10):1379-1386.
    [42] WANG XL, YANG GH, LI SS, GAO MF, ZHAO PF, ZHAO LX. The Escherichia coli-derived thymosin β4 concatemer promotes cell proliferation and healing wound in mice[J]. BioMed Research International, 2013, 2013:241721.
    [43] CHEN YH, ZHAO LX, SHEN GA, CUI LJ, REN WW, ZHANG H, QIAN HM, TANG KX. Expression and analysis of thymosin α1 concatemer in Escherichia coli[J]. Biotechnology and Applied Biochemistry, 2008, 49(1):51-56.
    [44] FIDA HM, KUMADA Y, TERASHIMA M, KATSUDA T, KATOH S. Tandem multimer expression of angiotensin I-converting enzyme inhibitory peptide in Escherichia coli[J]. Biotechnology Journal, 2009, 4(9):1345-1356.
    [45] PARK CJ, LEE JH, HONG SS, LEE HS, KIM SC. High-level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli[J]. Applied Microbiology and Biotechnology, 1998, 50(1):71-76.
    [46] LIU D, SUN HY, ZHANG LJ, LI SM, QIN ZY. High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13):5109-5112.
    [47] RAO XC, HU JC, LI S, JIN XL, ZHANG C, CONG YG, HU XM, TAN YL, HUANG JJ, CHEN ZJ, ZHU JM, HU FQ. Design and expression of peptide antibiotic hPAB-β as tandem multimers in Escherichia coli[J]. Peptides, 2005, 26(5):721-729.
    [48] WANG FJ, SONG HL, WANG XM, ZHANG WJ, WANG BL, ZHAO J, HU ZB. Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2012, 166(3):612-619.
    [49] GULER HI. Recombinant production of opiorphin pentapeptide as tandem multimers through rational design of primers[J]. Applied Biochemistry and Microbiology, 2020, 56(2):141-148.
    [50] ZHANG XL, GUO KY, DONG ZM, CHEN ZY, ZHU HT, ZHANG Y, XIA QY, ZHAO P. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon[J]. Insect Biochemistry and Molecular Biology, 2020, 116:103258.
    [51] CHEN ZY, BROWN RL, LAX AR, CLEVELAND TE, RUSSIN JS. Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli[J]. Applied and Environmental Microbiology, 1999, 65(3):1320-1324.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李游山,王圆,朱瑞,杨玺,魏梦,张照锋,陈长清. BmSPI38同型串联多聚体在大肠杆菌中的表达和抗真菌活性[J]. 生物工程学报, 2023, 39(10): 4275-4294

复制
分享
文章指标
  • 点击次数:474
  • 下载次数: 17947
  • HTML阅读次数: 1839
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 录用日期:2023-07-03
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第5896861位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司