pH对生物合成超声分子影像探针气囊充放气的调控
作者:
基金项目:

国家重点研发计划(2020YFA0908801)


Regulation of pH on inflation and deflation of biosynthetic gas vesicles used as ultrasound molecular imaging probes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    气囊(gas vesicles,GVs)是一种存在于蓝藻及古菌等微生物中调节浮力的类细胞器纳米结构,由蛋白质外壳包裹气体组成。近年来的研究表明,气囊具有作为超声分子影像探针的潜力。然而,气囊的充放气机制并不明确,限制了生物合成超声分子影像探针的保存和气体更换。本研究发现环境pH值是调节气囊充放气的一个重要因素。其不仅可以调节藻细胞内的气囊充放气进而使微囊藻呈现不同的漂浮状态,还可对提纯的气囊充放气进行体外调节,且该调节过程可逆。该机制的阐明为生物合成超声分子影像探针的大规模生产和保存,特别对气囊中的气体进行更换以满足不同的诊疗需求提供了技术支持,助力生物合成超声造影剂在疾病诊疗中的应用。

    Abstract:

    Gas vesicles (GVs) are gas-filled protein nanostructures that can regulate the buoyancy of microorganisms such as cyanobacteria and archaea. Recent studies have shown that GVs have the potential to be used as ultrasound molecular imaging probes in disease diagnosis and treatment. However, the mechanism of the inflation and deflation of GVs remains unclear, which hampers the preservation of GVs and gas replacement. In the present study, the environmental pH value was found to be an important factor in regulating the inflation and deflation of GVs. It can not only regulate the inflation and deflation of GVs in vivo to make Microcystis sp. cells present distinct levitation state, but also regulate the inflation and deflation of purified GVs in vitro, and the regulation process is reversible. Our results may provide a technical support for the large-scale production and preservation of biosynthetic ultrasound molecular imaging probes, especially for gas replacement to meet different diagnostic and therapeutic needs, and would facilitate the application of biosynthetic ultrasound molecular imaging probes.

    参考文献
    [1] WALSBY AE. Gas vesicles[J]. Annual Review of Plant Physiology, 1975, 26:427-439.
    [2] PFEIFER F. Distribution, formation and regulation of gas vesicles[J]. Nature Reviews Microbiology, 2012, 10(10):705-715.
    [3] LEWIS OLIVER R. Floating and sinking in gas-vacuolate cyanobacteria1[J]. Journal of Phycology, 1994, 30(2):161-173.
    [4] JUNG DO, ACHENBACH LA, KARR EA, TAKAICHI S, MADIGAN MT. A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica[J]. Archives of Microbiology, 2004, 182(2):236-243.
    [5] PFEIFER F, ENGLERT C. Function and biosynthesis of gas vesicles in halophilic archaea[J]. Journal of Bioenergetics and Biomembranes, 1992, 24(6):577-585.
    [6] WEATHERS PJ, JOST M, LAMPORT DT. The gas vacuole membrane of Microcystis aeruginosa. A partial amino acid sequence[J]. Archives of Biochemistry and Biophysics, 1977, 178(1):226-244.
    [7] STRUNK T, HAMACHER K, HOFFGAARD F, ENGELHARDT H, ZILLIG MD, FAIST K, WENZEL W, PFEIFER F. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo[J]. Molecular Microbiology, 2011, 81(1):56-68.
    [8] HUBERST, TERWIEL D, EVERS WH, MARESCA D, JAKOBI AJ. Cryo-EM structure of gas vesicles for buoyancy-controlled motility[J]. Cell, 2023, 186(5):975-986.e13.
    [9] WALSBY AE, HAYES PK. The minor cyanobacterial gas vesicle protein, GVPc, is attached to the outer surface of the gas vesicle[J]. Microbiology, 1988, 134(10):2647-2657.
    [10] VÖLKNER K, JOST A, PFEIFER F. Accessory gvp proteins form a complex during gas vesicle formation of haloarchaea[J]. Frontiers in Microbiology, 2020, 11:610179.
    [11] DUNTON PG, MAWBY WJ, SHAW VA, WALSBY AE. Analysis of tryptic digests indicates regions of GvpC that bind to gas vesicles of Anabaena flos-aquae[J]. Microbiology, 2006, 152(6):1661-1669.
    [12] TASHIRO Y, MONSON RE, RAMSAY JP, SALMOND GPC. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria[J]. Environmental Microbiology, 2016, 18(4):1264-1276.
    [13] BEARD SJ, HAYES PK, PFEIFER F, WALSBY AE. The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles[J]. FEMS Microbiology Letters, 2002, 213(2):149-157.
    [14] SHAPIRO MG, GOODWILL PW, NEOGY A, YIN M, STUART FOSTER F, SCHAFFER DV, CONOLLY SM. Biogenic gas nanostructures as ultrasonic molecular reporters[J]. Nature Nanotechnology, 2014, 9(4):311-316.
    [15] 许瑞, 龙欢, 汪迎晖, 黄开耀. 用于超声造影的微囊藻气囊提取新方法[J]. 生物工程学报, 2022, 38(4):1589-1601. XU R, LONG H, WANG Y, HUANG K. A new method for isolating gas vesicles from Microcystis for ultrasound contrast[J]. Chinese Journal of Biotechnology, 2022, 38(4):1589-1601(in Chinese).
    [16] PIEDRA M, ALLROGGEN A, LINDNER JR. Molecular imaging with targeted contrast ultrasound[J]. Cerebrovascular Diseases, 2009, 27(suppl. 2):66-74.
    [17] DONDELINGER R. Diagnostic ultrasound[J]. Biomedical Instrumentation & Technology, 2006, 40(1):39-44.
    [18] de JONG N, EMMER M, van WAMEL A, VERSLUIS M. Ultrasonic characterization of ultrasound contrast agents[J]. Medical & Biological Engineering & Computing, 2009, 47(8):861-873.
    [19] LONG H, QIN XJ, XU R, MEI CL, XIONG ZY, DENG X, HUANG KY, LIANG HG. Non-modified ultrasound-responsive gas vesicles from Microcystis with targeted tumor accumulation[J]. International Journal of Nanomedicine, 2021, 16:8405-8416.
    [20] SONG L, WANGGH, HOU XD, KALA S, QIU ZH, WONG KF, CAO F, SUN L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer[J]. Acta Biomaterialia, 2020, 108:313-325.
    [21] BOURDEAU RW, LEE-GOSSELIN A, LAKSHMANAN A, FARHADI A, KUMAR SR, NETY SP, SHAPIRO MG. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts[J]. Nature, 2018, 553(7686):86-90.
    [22] FARHADI A, HO GH, SAWYER DP, BOURDEAU RW, SHAPIRO MG. Ultrasound imaging of gene expression in mammalian cells[J]. Science, 2019, 365(6460):1469-1475.
    [23] YANG YH, QIU ZH, HOU XD, and SUN L. Ultrasonic characteristics and cellular properties of Anabaena gas vesicles[J]. Ultrasound in Medicine & Biology, 2017, 43(12):2862-2870.
    [24] BUCKLAND B, WALSBY AE. A study of the strength and stability of gas vesicles isolated from a blue-green alga[J]. Archiv Für Mikrobiologie, 1971, 79(4):327-337.
    [25] WALSBY AE. The pressure relationships of gas vacuoles[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1971, 178(1052):301-326.
    [26] WALSBY AE. The permeability of blue-green algal gas-vacuole membranes to gas[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1969, 173(1031):235-255.
    [27] WALSBY AE. The mechanical properties of the Microcystis gas vesicle[J]. Journal of General Microbiology, 1991, 137(10):2401-2408.
    [28] WALSBY AE, REVSBECH NP, GRIFFEL DH. The gas permeability coefficient of the cyanobacterial gas vesicle wall[J]. Journal of General Microbiology, 1992, 138(4):837-845.
    [29] FARHADI A, SIGMUND F, WESTMEYER GG, SHAPIRO MG. Genetically encodable materials for non-invasive biological imaging[J]. Nature Materials, 2021, 20(5):585-592.
    [30] MARESCA D, LAKSHMANAN A, ABEDI M, BAR-ZION A, FARHADI A, LU GJ, SZABLOWSKI JO, WU D, YOO S, SHAPIRO MG. Biomolecular ultrasound and sonogenetics[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9:229-252.
    [31] BOWEN CC, JENSEN TE. Blue-green algae:fine structure of the gas vacuoles[J]. Science, 1965, 147(3664):1460-1462.
    [32] MLOUKA A, COMTE K, CASTETS AM, BOUCHIER C, TANDEAU de MARSAC N. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy[J]. Journal of Bacteriology, 2004, 186(8):2355-2365.
    [33] TAN MT, DING ZY, MEI J, XIE J. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles[J]. Food Chemistry, 2022, 373:131511.
    [34] NIKOLAIDIS A, ANDREADIS M, MOSCHAKIS T. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra[J]. Food Chemistry, 2017, 232:425-433.
    [35] ZHANG MC, LI FF, DIAO XP, KONG BH. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles[J]. Meat Science, 2017, 133:10-18.
    [36] DUTKA P, ANN METSKAS L, HURT RC, SALAHSHOOR H, WANG TY, MALOUNDA D, LU G, CHOU TF, SHAPIRO MG, JENSEN GJ. Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET[J]. Biophysical Journal, 2023, 122(3):40a.
    [37] WALSBY AE. Permeability of gas vesicles to perfluorocyclobutane[J]. Microbiology, 1982, 128(8):1679-1684.
    [38] GAO H, ZHU T, XU M, WANG S, XU XD, KONG RQ. pH-dependent gas vesicle formation in Microcystis[J]. FEBS Letters, 2016, 590(18):3195-3201.
    [39] DEACON C, WALSBY AE. Gas vesicle formation in the dark, and in light of different irradiances, by the cyanobacterium Microcystis sp.[J]. British Phycological Journal, 1990, 25(2):133-139.
    [40] XU KC, CHEN JB, KONG XF, LV YY, QIN SC, SUN XJ, MU F, LU TY. "Real world survey" of hydrogen-controlled cancer:a follow-up report of 82 advanced cancer patients[J]. Medical Gas Research, 2019, 9(3):115.
    [41] CHEN LC, ZHOU SF, SU LC, SONG JB. Gas-mediated cancer bioimaging and therapy[J]. ACS Nano, 2019, 13(10):10887-10917.
    [42] ZHANG H, XIE MY, CHEN HH, BAVI S, SOHAIL M, BAVI R. Gas-mediated cancer therapy[J]. Environmental Chemistry Letters, 2021, 19(1):149-166.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龚钰翔,龙欢,黄开耀. pH对生物合成超声分子影像探针气囊充放气的调控[J]. 生物工程学报, 2023, 39(10): 4308-4321

复制
分享
文章指标
  • 点击次数:223
  • 下载次数: 814
  • HTML阅读次数: 596
  • 引用次数: 0
历史
  • 收稿日期:2023-03-27
  • 录用日期:2023-06-03
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6020937位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司