肠道微生物资源库的构建:进展、方法和展望
作者:
基金项目:

来晋优博科研经费(02010011/0113)


Construction of gut microbial culture banks: advances, methods and perspectives
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [120]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于肠道微生物组的活体药物(live biotherapeutics, LBPs)开发、菌株与宿主互作的分子机制研究及新型抗菌肽、酶、代谢途径的挖掘使得肠道微生物资源库的构建成为必然。本文对近年来国内外不同研究团队肠道微生物资源库构建进行系统比较,分析了不同构建方法间的差异,以期为国内外不同研究者在构建和丰富现有肠道微生物资源库方面提供帮助。目前,肠道微生物资源库共有1 000多种肠道细菌,分属于12个门、22个纲、39个目、96个科和358个属,厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、放线菌门(Actinomycetota)菌株最多。测序结果显示人肠道细菌物种丰富度在2 000左右,因此目前分离到的菌株远未达到饱和。在构建方法上,一般对粪便样本进行或不进行乙醇处理,使用非选择性培养基(以Gifu厌氧培养基为代表)进行涂布分离培养,最后进行纯化培养。使用较为简单的培养方法即可培养得到多数常见的重要肠道微生物类目,如双歧-乳杆菌属(Lactobacillus-bifidobacteria)菌株、阿克曼氏菌(Akkermansia muciniphila)、普拉梭菌(Faecalibacterium prausnitzii)、普雷沃氏菌属(Prevotella)及S24-7科菌株等。为满足功能研究和产品开发的需要,肠道微生物菌种资源库的样本来源应该进一步覆盖更多地域和生活习惯、疾病及健康状态具有显著差异的人群,从而进一步丰富肠道关键物种的菌株多样性。

    Abstract:

    Recently, the gut microbiota-based live biotherapeutics (LBPs) development, the interaction between gut microbial species and the host, and the mining of new antimicrobial peptides, enzymes and metabolic pathway have received increasing attention. Culturing gut microbial species is therefore of great importance. This review systemically compared the construction advances of gut microbial culture banks and also analyzed the differences of methods used by research groups to give insight into the construction and enrichment of gut microbial resources. Presently, the gut microbial culture banks have included more than 1 000 bacterial species, belonging to 12 phyla, 22 classes, 39 orders, 96 families, and 358 genera. Among these, Firmicutes, Proteobacteria, Bacteroidota, and Actinomycetota exhibited the greatest diversities at the species level. The sequencing data showed that there are more than 2 000 species inhibited in the human gut. Therefore, the cultured gut microbial species are far from saturation. In terms of the construction method, the stool samples were pre-treated with ethanol or directly spread and cultured in the non-selective nutritional rich medium (represented by Gifu anaerobic medium) to obtain single colony. Then single colony was further purified. Generally, a simplified isolation and culture method is sufficient to obtain the most common and important intestinal bacterial species, such as Bifidobacteria-Lactobacillus, Akkermansia muciniphila, Faecalibacterium prausnitzii, Prevotella and S24-7 family strains. Finally, microbial resources with great diversities at the strain level are required for further functional research and product development. Samples covering hosts with distinct physiological status, diets or regions are necessary.

    参考文献
    [1] ROOKS MG, GARRETT WS. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6): 341-352.
    [2] NICHOLSON JK, HOLMES E, KINROSS J, BURCELIN R, GIBSON G, JIA W, PETTERSSON S. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267.
    [3] ZENGLER K, ZARAMELA LS. The social network of microorganisms—how auxotrophies shape complex communities[J]. Nature Reviews Microbiology, 2018, 16(6): 383-390.
    [4] GURUNG M, LI Z, YOU H, RODRIGUES R, JUMP DB. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBioMedicine, 2020, 51: 102590.
    [5] DEROSA L, ROUTY B, THOMAS AM, IEBBA V, ZALCMAN G, FRIARD S, MAZIERES J, AUDIGIER-VALETTE C, MORO-SIBILOT D, GOLDWASSER F, ALVES COSTA SILVA C, TERRISSE S, BONVALET M, SCHERPEREEL A, PEGLIASCO H, RICHARD C, GHIRINGHELLI F, ELKRIEF A, DESILETS A, BLANC-DURAND F, et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer[J]. Nature Medicine, 2022, 28(2): 315-324.
    [6] UDAYAPPAN S, MANNERAS-HOLM L, CHAPLIN-SCOTT A, BELZER C, HERREMA H, DALLINGA-THIE GM, DUNCAN SH, STROES ESG, GROEN AK, FLINT HJ, BACKHED F, de VOS WM, NIEUWDORP M. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice[J]. Npj Biofilms and Microbiomes, 2016, 2: 16009.
    [7] YANG C, MOGNO I, CONTIJOCH EJ, BORGERDING JN, AGGARWALA V, LI ZH, SIU S, GRASSET EK, HELMUS DS, DUBINSKY MC, MEHANDRU S, CERUTTI A, FAITH JJ. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation[J]. Cell Host & Microbe, 2020, 27(3): 467-475.e6.
    [8] FEUERSTADT P, LOUIE TJ, LASHNER B, WANG EEL, DIAO LY, BRYANT JA, SIMS M, KRAFT CS, COHEN SH, BERENSON CS, KORMAN LY, FORD CB, LITCOFSKY KD, LOMBARDO MJ, WORTMAN JR, WU H, AUNIŅŠ JG, MCCHALICHER CWJ, WINKLER JA, MCGOVERN BH, et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection[J]. New England Journal of Medicine, 2022, 386(3): 220-229.
    [9] FDA. Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information[Z]. 2016.
    [10] O'TOOLE PW, MARCHESI JR, HILL C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics[J]. Nature Microbiology, 2017, 2(5): 17057.
    [11] COSTELOE K, HARDY P, JUSZCZAK E, WILKS M, MILLAR MR. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial[J]. The Lancet, 2016, 387(10019): 649-660.
    [12] SUEZ J, ZMORA N, ZILBERMAN-SCHAPIRA G, MOR U, DORI-BACHASH M, BASHIARDES S., ZUR M, REGEV-LEHAVI D, BRIK RBZ, FEDERICI S, HORN M, COHEN Y, MOOR AE, ZEEVI D, KOREM T, KOTLER E, HARMELIN A, ITZKOVITZ S, MAHARSHAK N, SHIBOLET O, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J]. Cell, 2018, 174(6): 1406-1423.e16.
    [13] MA Y, GUO ZY, XIA BB, ZHANG YW, LIU XL, YU Y, TANG N, TONG XM, WANG M, YE X, FENG J, CHEN YH, WANG J. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nature Biotechnology, 2022, 40(6): 921-931.
    [14] JIA B, HAN X, KIM KH, JEON CO. Discovery and mining of enzymes from the human gut microbiome[J]. Trends in Biotechnology, 2022, 40(2): 240-254.
    [15] RAJILIĆ-STOJANOVIĆ M, de VOS WM. The first 1 000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiology Reviews, 2014, 38(5): 996-1047.
    [16] NAYFACH S, SHI ZJ, SESHADRI R, POLLARD KS, KYRPIDES NC. New insights from uncultivated genomes of the global human gut microbiome[J]. Nature, 2019, 568(7753): 505-510.
    [17] ZOU YQ, XUE WB, LUO GW, DENG ZQ, QIN PP, GUO RJ, SUN HP, XIA Y, LIANG SS, DAI Y, WAN DW, JIANG RR, SU LL, FENG Q, JIE ZY, GUO TK, XIA ZK, LIU C, YU JH, LIN YX, et al. 1 520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses[J]. Nature Biotechnology, 2019, 37(2): 179-185.
    [18] LIU C, ZHOU N, DU MX, SUN YT, WANG K, WANG YJ, LI DH, YU HY, SONG YQ, BAI BB, XIN YH, WU LH, JIANG CY, FENG J, XIANG H, ZHOU YG, MA JC, WANG J, LIU HW, LIU SJ. The mouse gut microbial biobank expands the coverage of cultured bacteria[J]. Nature Communications, 2020, 11: 79.
    [19] LIU C, DU MX, ABUDUAINI R, YU HY, LI DH, WANG YJ, ZHOU N, JIANG MZ, NIU PX, HAN SS, CHEN HH, SHI WY, WU LH, XIN YH, MA JC, ZHOU YG, JIANG CY, LIU HW, LIU SJ. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank[J]. Microbiome, 2021, 9(1): 1-29.
    [20] LI DH, LIU C, ABUDUAINI R, DU MX, WANG YJ, ZHU HZ, CHEN HH, ZHOU N, XIN YH, WU LH, MA JC, ZHOU YG, LU Y, JIANG CY, SUN Q, LIU SJ. The monkey microbial biobank brings previously uncultivated bioresources for nonhuman primate and human gut microbiomes[J]. mLife, 2022, 1(2): 210-217.
    [21] POYET M, GROUSSIN M, GIBBONS SM, AVILA-PACHECO J, JIANG X, KEARNEY SM, PERROTTA AR, BERDY B, ZHAO S, LIEBERMAN TD, SWANSON PK, SMITH M, ROESEMANN S, ALEXANDER JE, RICH SA, LIVNY J, VLAMAKIS H, CLISH C, BULLOCK K, DEIK A, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research[J]. Nature Medicine, 2019, 25(9): 1442-1452.
    [22] GOODMAN AL, KALLSTROM G, FAITH JJ, REYES A, MOORE A, DANTAS G, GORDON JI. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6252-6257.
    [23] FORSTER SC, KUMAR N, ANONYE BO, ALMEIDA A, VICIANI E, STARES MD, DUNN M, MKANDAWIRE TT, ZHU AN, SHAO Y, PIKE LJ, LOUIE T, BROWNE HP, MITCHELL AL, NEVILLE BA, FINN RD, LAWLEY TD. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nature Biotechnology, 2019, 37(2): 186-192.
    [24] BROWNE HP, FORSTER SC, ANONYE BO, KUMAR N, NEVILLE BA, STARES MD, GOULDING D, LAWLEY TD. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016, 533(7604): 543-546.
    [25] LAGKOUVARDOS I, PUKALL R, ABT B, FOESEL BU, MEIER-KOLTHOFF JP, KUMAR N, BRESCIANI A, MARTÍNEZ I, JUST S, ZIEGLER C, BRUGIROUX S, GARZETTI D, WENNING M, BUI TPN, WANG J, HUGENHOLTZ F, PLUGGE CM, PETERSON DA, HORNEF MW, BAINES JF, et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota[J]. Nature Microbiology, 2016, 1(10): 16131.
    [26] LAU JT, WHELAN FJ, HERATH I, LEE CH, COLLINS SM, BERCIK P, SURETTE MG. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling[J]. Genome Medicine, 2016, 8(1): 1-10.
    [27] LAGIER JC, ARMOUGOM F, MILLION M, HUGON P, PAGNIER I, ROBERT C, BITTAR F, FOURNOUS G, GIMENEZ G, MARANINCHI M, TRAPE JF, KOONIN EV, la SCOLA B, RAOULT D. Microbial culturomics: paradigm shift in the human gut microbiome study[J]. Clinical Microbiology and Infection, 2012, 18(12): 1185-1193.
    [28] LAGIER JC, KHELAIFIA S, ALOU MT, NDONGO S, DIONE N, HUGON P, CAPUTO A, CADORET F, TRAORE SI, SECK EH, DUBOURG G, DURAND G, MOUREMBOU G, GUILHOT E, TOGO A, BELLALI S, BACHAR D, CASSIR N, BITTAR F, DELERCE J, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nature Microbiology, 2016, 1(12): 16203.
    [29] WYLENSEK D, HITCH TCA, RIEDEL T, AFRIZAL A, KUMAR N, WORTMANN E, LIU TZ, DEVENDRAN S, LESKER TR, HERNÁNDEZ SB, HEINE V, BUHL EM, M D'AGOSTINO P, CUMBO F, FISCHÖDER T, WYSCHKON M, LOOFT T, PARREIRA VR, ABT B, DODEN HL, et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity[J]. Nature Communications, 2020, 11(1): 6389.
    [30] MUKHERJEE S, SESHADRI R, VARGHESE NJ, ELOE-FADROSH EA, MEIER-KOLTHOFF JP, GÖKER M, COATES RC, HADJITHOMAS M, PAVLOPOULOS GA, PAEZ-ESPINO D, YOSHIKUNI Y, VISEL A, WHITMAN WB, GARRITY GM, EISEN JA, HUGENHOLTZ P, PATI A, IVANOVA NN, WOYKE T, KLENK HP, et al. 1 003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life[J]. Nature Biotechnology, 2017, 35(7): 676-683.
    [31] THE HUMAN MICROBIOME PROJECT CONSORTIUM. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486: 207-214.
    [32] COLLINS MD, LAWSON PA, WILLEMS A, CORDOBA JJ, FERNANDEZ-GARAYZABAL J, GARCIA P, CAI J, HIPPE H, FARROW JAE. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations[J]. International Journal of Systematic Bacteriology, 1994, 44(4): 812-826.
    [33] ATARASHI K, TANOUE T, SHIMA T, IMAOKA A, KUWAHARA T, MOMOSE Y, CHENG GH, YAMASAKI S, SAITO T, OHBA Y, TANIGUCHI T, TAKEDA K, HORI S, IVANOV Ⅱ, UMESAKI Y, ITOH K, HONDA K. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341.
    [34] ANSALDO E, SLAYDEN LC, CHING KL, KOCH MA, WOLF NK, PLICHTA DR, BROWN EM, GRAHAM DB, XAVIER RJ, MOON JJ, BARTON GM. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis[J]. Science, 2019, 364(6446): 1179-1184.
    [35] ISLAM MA, PUNT A, SPENKELINK B, MURK AJ, ROLAF van LEEUWEN FX, RIETJENS IMCM. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models[J]. Molecular Nutrition & Food Research, 2014, 58(3): 503-515.
    [36] VÁZQUEZ L, FLÓREZ A, REDRUELLO B, MAYO B. Metabolism of soy isoflavones by intestinal bacteria: genome analysis of an Adlercreutzia equolifaciens strain that does not produce equol[J]. Biomolecules, 2020, 10(6): 950.
    [37] VÁZQUEZ L, FLÓREZ AB, RODRÍGUEZ J, MAYO B. Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens[J]. FEMS Microbiology Letters, 2021, 368(13): fnab082.
    [38] GALIPEAU HJ, CAMINERO FERNANDEZ A, TURPIN W, BERMUDEZ-BRITO M, SANTIAGO A, LIBERTUCCI J, CONSTANTE M, RAYGOZA GARAY J, RUEDA GH, CLARIZIO AV, SMITH MI, SURETTE M, BERCIK P, CROITORU K, VERDU E. A29 novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis[J]. Journal of the Canadian Association of Gastroenterology, 2021, 4(supplement_1): 268-269.
    [39] PLOVIER H, EVERARD A, DRUART C, DEPOMMIER C, van HUL M, GEURTS L, CHILLOUX J, OTTMAN N, DUPARC T, LICHTENSTEIN L, MYRIDAKIS A, DELZENNE NM, KLIEVINK J, BHATTACHARJEE A, van der ARK KCH, AALVINK S, MARTINEZ LO, DUMAS ME, MAITER D, LOUMAYE A, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine, 2017, 23(1): 107-113.
    [40] ROUTY B, LE CHATELIER E, DEROSA L, DUONG CPM, ALOU MT, DAILLÈRE R, FLUCKIGER A, MESSAOUDENE M, RAUBER C, ROBERTI MP, FIDELLE M, FLAMENT C, POIRIER-COLAME V, OPOLON P, KLEIN C, IRIBARREN K, MONDRAGÓN L, JACQUELOT N, QU B, FERRERE G, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
    [41] YOON HS, CHO CH, YUN MS, JANG SJ, YOU HJ, KIM JH, HAN D, CHA KH, MOON SH, LEE K, KIM YJ, LEE SJ, NAM TW, KO G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J]. Nature Microbiology, 2021, 6(5): 563-573.
    [42] DHALIWAL G. Alistipes: the influence of a commensal on anxiety and depression[J]. Catalyst: Facets of Biochemistry and Biomedical Sciences, 2019, 3(1): 2-10.
    [43] ALESIA W, BARBARA P, MOURAD H, MONIKA S, JELENA C, HEINZMANN SILKE S, DMITRIJ T, THOMAS R, DAVID E, ZU CW, DIRK H, MICHAEL S, ANTON H, PHILIPPE SK. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets[J]. Scientific Reports, 2017, 7(1): 11047.
    [44] PARKER BJ, WEARSCH PA, VELOO ACM, RODRIGUEZ-PALACIOS A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health[J]. Frontiers in Immunology, 2020, 11: 906.
    [45] OCHOA-REPÁRAZ J, MIELCARZ DW, WANG Y, BEGUM-HAQUE S, DASGUPTA S, KASPER DL, KASPER LH. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease[J]. Mucosal Immunology, 2010, 3(5): 487-495.
    [46] AUSLAND C, ZHENG JF, YI HD, YANG BW, Li T, FENG XH, ZHENG B, YIN YB. dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates[J]. Nucleic Acids Research, 2021, 49(D1): D523-D528.
    [47] SUN LL, ZHANG Y, CAI J, RIMAL BP, ROCHA ER, COLEMAN JP, ZHANG CR, NICHOLS RG, LUO YH, KIM B, CHEN YZ, KRAUSZ KW, HARRIS CC, PATTERSON AD, ZHANG ZP, TAKAHASHI S, GONZALEZ FJ. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer[J]. Nature Communications, 2023, 14(1): 755.
    [48] LI HY, LANE JA, CHEN JC, LU Z, WANG HW, DHITAL S, FU X, HUANG Q, LIU FT, ZHANG B. In vitro fermentation of human milk oligosaccharides by individual Bifidobacterium longum-dominant infant fecal inocula[J]. Carbohydrate Polymers, 2022, 287: 119322.
    [49] KILLINGER BJ, WHIDBEY C, SADLER NC, DELEON AJ, MUNOZ N, KIM YM, WRIGHT AT. Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber[J]. Npj Biofilms and Microbiomes, 2022, 8: 60.
    [50] GLOVER JS, TICER T D, ENGEVIK M A. Characterizing the mucin-degrading capacity of the human gut microbiota[J]. Scientific Reports, 2022, 12(1): 8456.
    [51] ROBERTS DC, CHIDAMBARAM S, KINROSS JM. The role of the colonic microbiota and bile acids in colorectal cancer[J]. Current Opinion in Gastroenterology, 2021, 38(2): 179-188.
    [52] HOSOMI K, SAITO M, PARK J, MURAKAMI H, SHIBATA N, ANDO M, NAGATAKE T, KONISHI K, OHNO H, TANISAWA K, MOHSEN A, CHEN YA, KAWASHIMA H, NATSUME-KITATANI Y, OKA Y, SHIMIZU H, FURUTA M, TOJIMA Y, SAWANE K, SAIKA A, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota[J]. Nature Communications, 2022, 13: 4477.
    [53] GOUNOT JS, CHIA MH, BERTRAND D, SAW WY, RAVIKRISHNAN A, LOW A, DING YC, NG AHQ, TAN LWL, TEO YY, SEEDORF H, NAGARAJAN N. Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in southeast Asians[J]. Nature Communications, 2022, 13: 6044.
    [54] TAKAHASHI K, NISHIWAKI H, ITO M, IWAOKA K, TAKAHASHI K, SUZUKI Y, TAGUCHI K, YAMAHARA K, TSUBOI Y, KASHIHARA K, HIRAYAMA M, OHNO K, MAEDA T. Altered gut microbiota in Parkinson's disease patients with motor complications[J]. Parkinsonism & Related Disorders, 2022, 95: 11-17.
    [55] LIU XM, MAO BY, GU JY, WU JY, CUI SM, WANG G, ZHAO JX, ZHANG H, CHEN W. Blautia—a new functional genus with potential probiotic properties?[J]. Gut Microbes, 2021, 13(1): 1875796.
    [56] LE ROY T, van der SMISSEN P, PAQUOT A, DELZENNE N, MUCCIOLI GG, COLLET JF, CANI PD. Butyricimonas faecalis sp. nov., isolated from human faeces and emended description of the genus Butyricimonas[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(3): 833-838.
    [57] GUO PT, ZHANG K, MA X, HE PL. Clostridium species as probiotics: potentials and challenges[J]. Journal of Animal Science and Biotechnology, 2020, 11(1): 1-10.
    [58] ATARASHI K, TANOUE T, OSHIMA K, SUDA W, NAGANO Y, NISHIKAWA H, FUKUDA S, SAITO T, NARUSHIMA S, HASE K, KIM S, FRITZ JV, WILMES P, UEHA S, MATSUSHIMA K, OHNO H, OLLE B, SAKAGUCHI S, TANIGUCHI T, MORITA H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500(7461): 232-236.
    [59] PATRICIA RL, NATALIA MV, ISABEL MI, SARA MA, MANUEL LM J, LAURA CG, TINAHONES FRANCISCO J, ANTONIO FN. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort[J]. Biomedicine & Pharmacotherapy, 2022, 153: 113518.
    [60] FROST F, STORCK LJ, KACPROWSKI T, GÄRTNER S, RÜHLEMANN M, BANG C, FRANKE A, VÖLKER U, AGHDASSI AA, STEVELING A, MAYERLE J, WEISS FU, HOMUTH G, LERCH MM. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study[J]. PLoS One, 2019, 14(7): e0219489.
    [61] NIKOLOVA VL, SMITH MRB, HALL LJ, CLEARE AJ, STONE JM, YOUNG AH. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis[J]. JAMA Psychiatry, 2021, 78(12): 1343-1354.
    [62] BAFFERT C, KPEBE A, AVILAN L, BRUGNA M. Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus[M]//Advances in Microbial Physiology. Amsterdam: Elsevier, 2019: 143-189.
    [63] LU GX, ZHANG Y, REN YL, SHI JS, XU ZH, GENG Y. Diversity and comparison of intestinal Desulfovibrio in patients with liver cirrhosis and healthy people[J]. Microorganisms, 2023, 11(2): 276.
    [64] LIU YX, LI WH, YANG HX, ZHANG XY, WANG WX, JIA ST, XIANG BB, WANG Y, MIAO L, ZHANG H, WANG L, WANG YJ, SONG JX, SUN YJ, CHAI LJ, TIAN XX. Leveraging 16S rRNA microbiome sequencing data to identify bacterial signatures for irritable bowel syndrome[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 645951.
    [65] ARE A, ARONSSON L, WANG SG, GREICIUS G, LEE YK, GUSTAFSSON JÅ, PETTERSSON S, ARULAMPALAM V. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1943-1948.
    [66] KRAWCZYK B, WITYK P, GAŁĘCKA M, MICHALIK M. The many faces of Enterococcus spp. —commensal, probiotic and opportunistic pathogen[J]. Microorganisms, 2021, 9(9): 1900.
    [67] LAVERDE GOMEZ JA, HENDRICKX APA, WILLEMS RJ, TOP J, SAVA I, HUEBNER J, WITTE W, WERNER G. Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island[J]. PLoS One, 2011, 6(4): e16720.
    [68] MUKHERJEE A, LORDAN C, ROSS RP, COTTER PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health[J]. Gut Microbes, 2020, 12(1): 1802866.
    [69] SOKOL H, PIGNEUR B, WATTERLOT L, LAKHDARI O, BERMÚDEZ-HUMARÁN LG, GRATADOUX JJ, BLUGEON S, BRIDONNEAU C, FURET JP, CORTHIER G, GRANGETTE C, VASQUEZ N, POCHART P, TRUGNAN G, THOMAS G, BLOTTIÈRE HM, DORÉ J, MARTEAU P, SEKSIK P, LANGELLA P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43): 16731-16736.
    [70] LI HB, XU ML, XU XD, TANG YY, JIANG HL, LI L, XIA WJ, CUI N, BAI J, DAI ZM, HAN B, LI Y, PENG B, DONG YY, ARYAL S, MANANDHAR I, ALI ELADAWI M, SHUKLA R, KANG YM, JOE B, et al. Faecalibacterium prausnitzii attenuates CKD via butyrate-renal GPR43 axis[J]. Circulation Research, 2022, 131(9): e120-e134.
    [71] QUÉVRAIN E, MAUBERT MA, MICHON C, CHAIN F, MARQUANT R, TAILHADES J, MIQUEL S, CARLIER L, BERMÚDEZ-HUMARÁN LG, PIGNEUR B, LEQUIN O, KHARRAT P, THOMAS G, RAINTEAU D, AUBRY C, BREYNER N, AFONSO C, LAVIELLE S, GRILL JP, CHASSAING G, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease[J]. Gut, 2016, 65(3): 415-425.
    [72] ZHANG PC, HUANG P, DU JJ, HE YX, LIU J, HE GY, CUI SS, ZHANG WS, LI G, CHEN SD. Specific gut microbiota alterations in essential tremor and its difference from Parkinson's disease[J]. NPJ Parkinson's Disease, 2022, 8(1): 98.
    [73] RODRIGUEZ-DIAZ C, TAMINIAU B, GARCÍA-GARCÍA A, CUETO A, ROBLES-DÍAZ M, ORTEGA-ALONSO A, MARTÍN-REYES F, DAUBE G, SANABRIA-CABRERA J, JIMENEZ-PEREZ M, ISABEL LUCENA M, ANDRADE RJ, GARCÍA-FUENTES E, GARCÍA-CORTES M. Microbiota diversity in nonalcoholic fatty liver disease and in drug-induced liver injury[J]. Pharmacological Research, 2022, 182: 106348.
    [74] LAVELLE A, NANCEY S, REIMUND JM, LAHARIE D, MARTEAU P, TRETON X, ALLEZ M, ROBLIN X, MALAMUT G, OEUVRAY C, ROLHION N, DRAY X, RAINTEAU D, LAMAZIERE A, GAULIARD E, KIRCHGESNER J, BEAUGERIE L, SEKSIK P, PEYRIN-BIROULET L, SOKOL H. Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer[J]. Gut Microbes, 2022, 14(1): 2078620.
    [75] FORBES JESSICA D, CHIH-YU C, KNOX NATALIE C, RUTH-ANN M, HANI EG, TERESA DK, MICHELLE A, BERNSTEIN CHARLES N, GARY VD. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist?[J]. Microbiome, 2018, 6(1): 221.
    [76] CAPURSO L. Thirty years of Lactobacillus rhamnosus GG: a review[J]. Journal of Clinical Gastroenterology, 2019, 53: S1-S41.
    [77] KONG YZ, OLEJAR K, ON S, CHELIKANI V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract[J]. Antioxidants, 2020, 9(7): 610.
    [78] CHEE WJY, CHEW SY, THAN LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health[J]. Microbial Cell Factories, 2020, 19(1): 1-24.
    [79] FOLEY MH, O'FLAHERTY S, ALLEN G, RIVERA AJ, STEWART A, BARRANGOU R, THERIOT C. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization[J]. Proceedings of the National Academy of Sciences, 2021, 118(6): e2017709118.
    [80] JEONG JJ, PARK HJ, CHA MG, PARK E, WON SM, GANESAN R, GUPTA H, GEBRU YA, SHARMA SP, LEE SB, KWON GH, JEONG MK, MIN BH, HYUN JY, EOM JA, YOON SJ, CHOI MR, KIM DJ, SUK KT. The Lactobacillus as a probiotic: focusing on liver diseases[J]. Microorganisms, 2022, 10(2): 288.
    [81] KLEEREBEZEM M, BACHMANN H, van PELT-KLEINJAN E, DOUWENGA S, SMID EJ, TEUSINK B, van MASTRIGT O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis[J]. FEMS Microbiology Reviews, 2020, 44(6): 804-820.
    [82] SHIMIZU J, KUBOTA T, TAKADA E, TAKAI KJ, FUJIWARA N, ARIMITSU N, UEDA Y, WAKISAKA S, SUZUKI T, SUZUKI N. Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet's disease (210 characters)[J]. Clinical Rheumatology, 2019, 38(5): 1437-1445.
    [83] ZHOU JL, ZHANG Q, ZHAO YZ, ZOU YP, CHEN MX, ZHOU SM, WANG ZX. The relationship of Megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota[J]. Scientific Reports, 2022, 12(1): 22001.
    [84] GHOSH TS, SHANAHAN F, O'TOOLE PW. The gut microbiome as a modulator of healthy ageing[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(9): 565-584.
    [85] XING CS, WANG MJ, AJIBADE AA, TAN P, FU CT, CHEN L, ZHU MT, HAO ZZ, CHU JJ, YU X, YIN BN, ZHU JH, SHEN WJ, DUAN TH, WANG HY, WANG RF. Microbiota regulate innate immune signaling and protective immunity against cancer[J]. Cell Host & Microbe, 2021, 29(6): 959-974.e7.
    [86] LIMA S, LONGMAN RS. A diamond in the rough: IgA-seq signatures stratify new onset IBD[J]. Cell Host & Microbe, 2021, 29(1): 10-12.
    [87] SAVAGE JH, LEE-SARWAR KA, SORDILLO J, BUNYAVANICH S, ZHOU YJ, O'CONNOR G, SANDEL M, BACHARIER LB, ZEIGER R, SODERGREN E, WEINSTOCK GM, GOLD DR, WEISS ST, LITONJUA AA. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood[J]. Allergy, 2018, 73(1): 145-152.
    [88] del CHIERICO F, NOBILI V, VERNOCCHI P, RUSSO A, de STEFANIS C, GNANI D, FURLANELLO C, ZANDONÀ A, PACI PL, CAPUANI G, DALLAPICCOLA B, MICCHELI A, ALISI A, PUTIGNANI L. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology, 2016, 65(2): 451-464.
    [89] YANG JP, LI YN, WEN ZQ, LIU WZ, MENG LT, HUANG H. Oscillospira-a candidate for the next-generation probiotics[J]. Gut Microbes, 2021, 13(1): 1987783.
    [90] LE H, LEE MT, BESLER K, COMRIE JMC, JOHNSON EL. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome[J]. Nature Microbiology, 2022, 7: 1390-1403.
    [91] SUN HJ, GUO YK, WANG HD, YIN AL, HU J, YUAN TJ, ZHOU SX, XU WC, WEI P, YIN SS, LIU PR, GUO X, TANG YZ, YAN YJ, LUO ZC, WANG MJ, LIANG QQ, WU P, ZHANG AF, ZHOU ZX, et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis[J]. Gut, 2023, 72(9): 1664-1677.
    [92] LI YX, WATANABE E, KAWASHIMA Y, PLICHTA DR, WANG ZJ, UJIKE M, ANG QY, WU RR, FURUICHI M, TAKESHITA K, YOSHIDA K, NISHIYAMA K, KEARNEY SM, SUDA W, HATTORI M, SASAJIMA S, MATSUNAGA T, ZHANG XX, WATANABE K, FUJISHIRO J, et al. Identification of trypsin-degrading commensals in the large intestine[J]. Nature, 2022, 609(7927): 582-589.
    [93] WLODARSKA M, LUO CQ, KOLDE R, D'HENNEZEL E, ANNAND JW, HEIM CE, KRASTEL P, SCHMITT EK, OMAR AS, CREASEY EA, GARNER AL, MOHAMMADI S, O'CONNELL DJ, ABUBUCKER S, ARTHUR TD, FRANZOSA EA, HUTTENHOWER C, MURPHY LO, HAISER HJ, VLAMAKIS H, PORTER JA, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation[J]. Cell Host & Microbe, 2017, 22(1): 25-37.e6.
    [94] LONG XH, WONG CC, TONG L, CHU ESH, SZETO CH, GO MYY, COKER OO, CHAN AWH, CHAN FKL, SUNG JJY, YU J. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nature Microbiology, 2019, 4(12): 2319-2330.
    [95] HIROKO NK, LESLIE JHANSI L, SHO K, JIN CS, THOMSSON KRISTINA A, GILLILLAND MERRITT G, PETER K, YOSHIYUKI G, JENQ ROBERT R, CHIHARU I, AKIYOSHI H, SEEKATZ ANNA M, MARTENS ERIC C, EATON KATHRYN A, KAO JOHN Y, SHINJI F, HIGGINS PETER DR, KARLSSON NICLAS G, YOUNG VINCENT B, NOBUHIKO K. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota[J]. Nature Medicine, 2020, 26(4): 608-617.
    [96] TETT A, HUANG KD, ASNICAR F, FEHLNER-PEACH H, PASOLLI E, KARCHER N, ARMANINI F, MAGHI P, BONHAM K, ZOLFO M, de FILIPPIS F, MAGNABOSCO C, BONNEAU R, LUSINGU J, AMUASI J, REINHARD K, RATTEI T, BOULUND F, ENGSTRAND L, ZINK A, et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations[J]. Cell Host & Microbe, 2019, 26(5): 666-679.e7.
    [97] FEHLNER-PEACH H, MAGNABOSCO C, RAGHAVAN V, SCHER JU, TETT A, COX LM, GOTTSEGEN C, WATTERS A, WILTSHIRE-GORDON JD, SEGATA N, BONNEAU R, LITTMAN DR. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates[J]. Cell Host & Microbe, 2019, 26(5): 680-690.e5.
    [98] LI J, GÁLVEZ EJC, AMEND L, ALMÁSI É, ILJAZOVIC A, LESKER TR, BIELECKA AA, SCHORR EM, STROWIG T. A versatile genetic toolbox for Prevotella copri enables studying polysaccharide utilization systems[J]. The EMBO Journal, 2021, 40(23): e108287.
    [99] SEIFERT JA, BEMIS EA, RAMSDEN K, LOWELL C, POLINSKI K, FESER M, FLEISCHER C, DEMORUELLE MK, BUCKNER J, GREGERSEN PK, KEATING RM, MIKULS TR, O'DELL JR, WEISMAN MH, DEANE KD, NORRIS JM, STEERE AC, HOLERS VM. Association of antibodies to Prevotella copri in anti-cyclic citrullinated peptide-positive individuals at risk of developing rheumatoid arthritis and in patients with early or established rheumatoid arthritis[J]. Arthritis & Rheumatology, 2023, 75(4): 507-516.
    [100] de FILIPPIS F, PASOLLI E, TETT A, TARALLO S, NACCARATI A, de ANGELIS M, NEVIANI E, COCOLIN L, GOBBETTI M, SEGATA N, ERCOLINI D. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets[J]. Cell Host & Microbe, 2019, 25(3): 444-453.e3.
    [101] QUAN YS, MENG XR, SHEN ZH, WANG XY. Tu1849-Roseburia intestinalis flagellin alleviates experimental colitis in mice through enhancing intestinal barrier function and inhibiting inflammation[J]. Gastroenterology, 2019, 156(6): S-1147.
    [102] KASAHARA K, KRAUTKRAMER KA, ORG E, ROMANO KA, KERBY RL, VIVAS EI, MEHRABIAN M, DENU JM, BACKHED F, LUSIS AJ, REY FE. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model[J]. Nature Microbiology, 2018, 3(12): 1461-1471.
    [103] LEANTILA ROSA S, LETH ML, MICHALAK L, HANSEN ME, PUDLO NA, GLOWACKI R, PEREIRA G, WORKMAN CT, ARNTZEN MØ, POPE PB, MARTENS EC, ABOU HACHEM M, WESTERENG B. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans[J]. Nature Communications, 2019, 10: 905.
    [104] ZHAO CJ, BAO LJ, QIU M, WU KY, ZHAO YH, FENG LJ, XIANG KH, ZHANG NS, HU XY, FU YH. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice[J]. Cell Reports, 2022, 41(8): 111681.
    [105] RUFF WE, DEHNER C, KIM WJ, PAGOVICH O, AGUIAR CL, YU AT, ROTH AS, VIEIRA SM, KRIEGEL C, ADENIYI O, MULLA MJ, ABRAHAMS VM, KWOK WW, NUSSINOV R, ERKAN D, GOODMAN AL, KRIEGEL MA. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity[J]. Cell Host & Microbe, 2019, 26(1): 100-113.e8.
    [106] de FILIPPIS F, PAPARO L, NOCERINO R, DELLA GATTA G, CARUCCI L, RUSSO R, PASOLLI E, ERCOLINI D, BERNI CANANI R. Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance[J]. Nature Communications, 2021, 12: 5958.
    [107] BUNKER JJ, DREES C, WATSON AR, PLUNKETT CH, NAGLER CR, SCHNEEWIND O, EREN AM, BENDELAC A. B cell superantigens in the human intestinal microbiota[J]. Science Translational Medicine, 2019, 11(507): eaau9356.
    [108] GRAHNEMO L, NETHANDER M, COWARD E, ELVESTAD GABRIELSEN M, SREE S, BILLOD JM, ENGSTRAND L, ABRAHAMSSON S, LANGHAMMER A, HVEEM K, OHLSSON C. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome: the HUNT study[J]. The Lancet Diabetes & Endocrinology, 2022, 10(7): 481-483.
    [109] SASAKI M, SCHWAB C, RAMIREZ GARCIA A, LI Q, FERSTL R, BERSUCH E, AKDIS CA, LAUENER R, FREI R, RODUIT C, BIEBER T, SCHMID-GRENDELMEIER P, TRAIDL-HOFFMANN C, BRÜGGEN MC, RHYNER C, STUDY GROUP CC. The abundance of Ruminococcus bromii is associated with faecal butyrate levels and atopic dermatitis in infancy[J]. Allergy, 2022, 77(12): 3629-3640.
    [110] KAAKOUSH NO. Sutterella species, IgA-degrading bacteria in ulcerative colitis[J]. Trends in Microbiology, 2020, 28(7): 519-522.
    [111] SCHEIMAN J, LUBER JM, CHAVKIN TA, MACDONALD T, TUNG A, PHAM LD, WIBOWO MC, WURTH RC, PUNTHAMBAKER S, TIERNEY BT, YANG Z, HATTAB MW, AVILA-PACHECO J, CLISH CB, LESSARD S, CHURCH GM, KOSTIC AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism[J]. Nature Medicine, 2019, 25(7): 1104-1109.
    [112] RETTEDAL EA, GUMPERT H, SOMMER MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria[J]. Nature Communications, 2014, 5: 4714.
    [113] ZHAI QX, CHEN W, FENG SS, TIAN FW, LU WW, ZHAO JX, ZHANG H. Specific screening medium for Akkermansia muciniphila and preparation method and application thereof: CN109355349B[P]. 2021-03-26 (in Chinese). 翟齐啸, 陈卫, 冯赛赛, 田丰伟, 陆文伟, 赵建新, 张灏. 一种阿克曼氏菌特异性筛选培养基及其制备方法和应用: CN109355349B[P]. 2021-03-26.
    [114] CHANG YX, HOU FY, BI YJ, YANG RF. Optimization of culturomics methods[J]. Bio-protocol, 2021: e2003639-e2003639. 常宇骁, 侯凤仪, 毕玉晶, 杨瑞馥. 培养组学方法优化[J]. Bio-protocol, 2021: e2003639-e2003639.
    [115] LEWIS WH, TAHON G, GEESINK P, SOUSA DZ, ETTEMA TJG. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2021, 19(4): 225-240.
    [116] BRITO IL, GURRY T, ZHAO SJ, HUANG K, YOUNG SK, SHEA TP, NAISILISILI W, JENKINS AP, JUPITER SD, GEVERS D, ALM EJ. Transmission of human-associated microbiota along family and social networks[J]. Nature Microbiology, 2019, 4(6): 964-971.
    [117] ZHAO SJ, LIEBERMAN TD, POYET M, KAUFFMAN KM, GIBBONS SM, GROUSSIN M, XAVIER RJ, ALM EJ. Adaptive evolution within gut microbiomes of healthy people[J]. Cell Host & Microbe, 2019, 25(5): 656-667.e8.
    [118] PATNODE ML, GURUGE JL, CASTILLO JJ, COUTURE GA, LOMBARD V, TERRAPON N, HENRISSAT B, LEBRILLA CB, GORDON JL. Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles[J]. Cell Host & Microbe, 2021, 29(4): 664-673.e5.
    [119] OGLEKAR P, SONNENBURG ED, HIGGINBOTTOM SK, EARLE KA, MORLAND C, SHAPIRO-WARD S, BOLAM DN, SONNENBURG JL. Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains[J]. mSphere, 2018, 3(3): e00185-18.
    [120] CHEN FZ, YOU LJ, YANG F, WANG LN, GUO XQ, GAO F, HUA C, TAN C, FANG L, SHAN RQ, ZENG WJ, WANG B, WANG R, XU X, WEI XF. CNGBdb: china national genebank database[J]. Hereditas, 2020, 42(8): 799-809.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯赛赛,柳利平,张亮亮,徐建国. 肠道微生物资源库的构建:进展、方法和展望[J]. 生物工程学报, 2023, 39(11): 4463-4481

复制
分享
文章指标
  • 点击次数:430
  • 下载次数: 1689
  • HTML阅读次数: 675
  • 引用次数: 0
历史
  • 收稿日期:2023-01-12
  • 录用日期:2023-04-24
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第6073609位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司