代谢工程改造酿酒酵母合成柠檬烯及其衍生物
作者:
基金项目:

国家自然科学基金(32271533)


Production of limonene and its derivative in Saccharomyces cerevisiae via metabolic engineering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    柠檬烯及其衍生物紫苏酸作为重要的生物活性天然产物,广泛应用于食品、化妆品、保健品和医药等行业。然而,低效率的植物提取与高能耗的化工合成限制了柠檬烯和紫苏酸的工业合成。本研究在酿酒酵母中通过过氧化物酶体区室化表达绿薄荷来源的柠檬烯合酶,构建获得重组菌株,柠檬烯产量为0.038 mg/L。采用模块化工程分步表达参与柠檬烯合成的基因ERG10ERG13tHMGRERG12ERG8IDI1MVD1ERG20ww以及tLS,以研究其对柠檬烯产量的影响。通过增加前体模块,柠檬烯产量增加至1.14 mg/L。采用高拷贝数的质粒表达上述关键基因,柠檬烯的产量显著提高,达到86.74 mg/L,提高至初始菌株产量的4 337倍。以构建的柠檬烯生产菌株为出发菌株,通过表达丹参来源的细胞色素P450酶基因,实现了紫苏酸的生成,其产量达4.42 mg/L,为利用酿酒酵母构建高产单萜类天然产物的细胞工厂奠定了基础。

    Abstract:

    Limonene and its derivative perillic acid are widely used in food, cosmetics, health products, medicine and other industries as important bioactive natural products. However, inefficient plant extraction and high energy-consuming chemical synthesis hamper the industrial production of limonene and perillic acid. In this study, limonene synthase from Mentha spicatawas expressed in Saccharomyces cerevisiae by peroxisome compartmentalization, and the yield of limonene was 0.038 mg/L. The genes involved in limonene synthesis, ERG10, ERG13, tHMGR, ERG12, ERG8, IDI1, MVD1, ERG20ww and tLS, were step-wise expressed via modular engineering to study their effects on limonene yield. The yield of limonene increased to 1.14 mg/L by increasing the precursor module. Using the plasmid with high copy number to express the above key genes, the yield of limonene significantly increased up to 86.74 mg/L, which was 4 337 times higher than that of the original strain. Using the limonene-producing strain as the starting strain, the production of perillic acid was successfully achieved by expressing cytochrome P450 enzyme gene from Salvia miltiorrhiza, and the yield reached 4.42 mg/L. The results may facilitate the construction of cell factory with high yield of monoterpene products by S. cerevisiae.

    参考文献
    [1] JONGEDIJK E, CANKAR K, BUCHHAUPT M, SCHRADER J, BOUWMEESTER H, BEEKWILDER J. Biotechnological production of limonene in microorganisms[J]. Applied Microbiology and Biotechnology, 2016, 100(7):2927-2938.
    [2] GUNESER O, DEMIRKOL A, YUCEER YK, TOGAY SO, HOSOGLU MI, ELIBOL M. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis[J]. Brazilian Journal of Microbiology, 2017, 48(2):275-285.
    [3] THOMSETT MR, MOORE JC, BUCHARD A, STOCKMAN RA, HOWDLE SM. New renewably-sourced polyesters from limonene-derived monomers[J]. Green Chemistry, 2019, 21(1):149-156.
    [4] REN YY, LIU SS, JIN GJ, YANG XB, ZHOU YJ. Microbial production of limonene and its derivatives:achievements and perspectives[J]. Biotechnology Advances, 2020, 44:107628.
    [5] CIRIMINNA R, LOMELI-RODRIGUEZ M, DEMMA CARÀ P, LOPEZ-SANCHEZ JA, PAGLIARO M. Limonene:a versatile chemical of the bioeconomy[J]. Chemical Communications (Cambridge, England), 2014, 50(97):15288-15296.
    [6] CHANDRAN SS, KEALEY JT, REEVES CD. Microbial production of isoprenoids[J]. Process Biochemistry, 2011, 46(9):1703-1710.
    [7] MOSER S, PICHLER H. Identifying and engineering the ideal microbial terpenoid production host[J]. Applied Microbiology and Biotechnology, 2019, 103(14):5501-5516.
    [8] SHIN JONGHYEON, SOUTH ERIC J, DUNLOP MARY J. Transcriptional tuning of mevalonate pathway enzymes to identify the impact on limonene production in Escherichia coli[J]. ACS Omega, 2022, 7(22):18331-18338.
    [9] FERRARA MA, ALMEIDA DS, SIANI AC, LUCCHETTI L, LACERDA PSB, FREITAS A, TAPPIN MRR, BON EPS. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica[J]. Brazilian Journal of Microbiology, 2013, 44(4):1075-1080.
    [10] CHENG S, LIU X, JIANG GZ, WU JH, ZHANG JL, LEI DW, YUAN YJ, QIAO JJ, ZHAO GR. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8(5):968-975.
    [11] HU ZH, LIN LC, LI HX, LI P, WENG YR, ZHANG CY, YU AQ, XIAO DG. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(6/7):511-523.
    [12] IGNEA C, RAADAM MH, MOTAWIA MS, MAKRIS AM, VICKERS CE, KAMPRANIS SC. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019, 10:3799.
    [13] CHENG BQ, WEI LJ, LV YB, CHEN J, HUA Q. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24(3):500-506.
    [14] WU JH, CHENG S, CAO JY, QIAO JJ, ZHAO GR. Systematic optimization of limonene production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2019, 67(25):7087-7097.
    [15] MIRATA MA, HEERD D, SCHRADER J. Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264[J]. Process Biochemistry, 2009, 44(7):764-771.
    [16] MEADOWS AL, HAWKINS KM, TSEGAYE Y, ANTIPOV E, KIM Y, RAETZ L, DAHL RH, TAI AN, MAHATDEJKUL-MEADOWS T, XU L, ZHAO LS, DASIKA MS, MURARKA A, LENIHAN J, ENG DIANA, LENG JS, LIU CL, WENGER JW, JIANG HX, CHAO L, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622):694-697.
    [17] PADDON CJ, WESTFALL PJ, PITERA DJ, BENJAMIN K, FISHER K, MCPHEE D, LEAVELL MD, TAI A, MAIN A, ENG D, POLICHUK DR, TEOH KH, REED DW, TREYNOR T, LENIHAN J, JIANG H, FLECK M, BAJAD S, DANG G, DENGROVE D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446):528-532.
    [18] YIFENG WEI, EE LUI ANG, HUIMIN ZHAO. Recent developments in the application of P450 based biocatalysts[J]. Current Opinion in Chemical Biology, 2018, 43:1-7.
    [19] BINGYIN PENG, LARS K. NIELSEN, SOTIRIOS C. KAMPRANIS, CLAUDIA E. VICKERS. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 47:83-93.
    [20] JONGEDIJK E, CANKAR K, RANZIJN J, van der KROL S, BOUWMEESTER H, BEEKWILDER J. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae[J]. Yeast, 2015, 32(1):159-171.
    [21] LIU GS, LI T, ZHOU W, JIANG M, TAO XY, LIU M, ZHAO M, REN YH, GAO B, WANG FQ, WEI DZ. The yeast peroxisome:a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2020, 57:151-161.
    [22] YEE DA, DENICOLA AB, BILLINGSLEY JM, CRESO JG, SUBRAHMANYAM V, TANG Y. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2019, 55:76-84.
    [23] 胡智慧, 谌柄旭, 于爱群, 肖冬光. 代谢工程改造酿酒酵母合成植物萜类d-柠檬烯的策略[J]. 微生物学报, 2018, 58(9):1542-1550. HU ZH, CHEN BX, YU AQ, XIAO DG. Strategies of metabolic engineering Saccharomyces cerevisiae to produce plant-derived d-limonene[J]. Acta Microbiologica Sinica, 2018, 58(9):1542-1550(in Chinese).
    [24] DAVIES FK, WORK VH, BELIAEV AS, POSEWITZ MC. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2:21.
    [25] CHUANBO ZHANG, JINGJING LIU, FANGLONG ZHAO, CHUNZHE LU, GUANG-RONG ZHAO, WENYU LU. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 49:28-35.
    [26] 郭晋蓉, 杨海泉, 张利华, 夏媛媛, 沈微, 曹钰, 陈献忠. 代谢工程改造热带假丝酵母合成l-柠檬烯[EB/OL]. 北京:中国科技论文在线[2022-03-10]. http://www.paper.edu.cn/releasepaper/content/202203-110. GUO JR, YANG HQ, ZHANG LH, XIA YY, SHEN W, CAO Y, CHEN XZ. Synthesis of l-limonene by Candida tropicalis modified by metabolic engineering[EB/OL]. Sciencepaper Online[2022-03-10]. http://www.paper.edu.cn/releasepaper/content/202203-110(in Chinese).
    [27] HAMMER SK, AVALOS JL. Harnessing yeast organelles for metabolic engineering[J]. Nature Chemical Biology, 2017, 13(8):823-832.
    [28] DUSSÉAUX S, WAJN WT, LIU YX, IGNEA C, KAMPRANIS SC. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50):31789-31799.
    [29] DELOACHE WC, RUSS ZN, DUEBER JE. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways[J]. Nature Communications, 2016, 7:11152.
    [30] JIANG GZ, YAO MD, WANG Y, ZHOU L, SONG TQ, LIU H, XIAO WH, YUAN YJ. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 41:57-66.
    [31] KANG W, MA T, LIU M, QU JL, LIU ZJ, ZHANG HW, SHI B, FU S, MA JC, LAI LTF, HE SC, QU JN, WING-NGOR AU S, HO KANG B, YU LAU WC, DENG ZX, XIA J, LIU TG. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10:4248.
    [32] ZHANG Y, BIAN SQ, LIU XF, FANG N, WANG CK, LIU YH, DU YM, TIMKO MP, ZHANG ZF, ZHANG HB. Synthesis of cembratriene-ol and cembratriene-diol in yeast via the MVA pathway[J]. Microbial Cell Factories, 2021, 20(1):1-9.
    [33] HU TY, ZHOU JW, TONG YR, SU P, LI XL, LIU Y, LIU N, WU XY, ZHANG YF, WANG JD, GAO LH, TU LC, LU Y, JIANG ZQ, ZHOU YJ, GAO W, HUANG LQ. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast[J]. Metabolic Engineering, 2020, 60:87-96.
    [34] VANDAMME EJ, SOETAERT W. Bioflavours and fragrances via fermentation and biocatalysis[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(12):1323-1332.
    [35] DUETZ WA, BOUWMEESTER H, BEILEN JB, WITHOLT B. Biotransformation of limonene by bacteria, fungi, yeasts, and plants[J]. Applied Microbiology and Biotechnology, 2003, 61(4):269-277.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄瑶,杨海泉,沈微,夏媛媛,曹钰,陈献忠. 代谢工程改造酿酒酵母合成柠檬烯及其衍生物[J]. 生物工程学报, 2023, 39(11): 4647-4662

复制
分享
文章指标
  • 点击次数:408
  • 下载次数: 1045
  • HTML阅读次数: 486
  • 引用次数: 0
历史
  • 收稿日期:2023-03-07
  • 录用日期:2023-05-11
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第5997112位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司