非洲猪瘟病毒I226R蛋白抑制cGAS-STING通路介导的天然免疫应答
作者:
基金项目:

国家重点研发计划(2021YFD1801202);国家自然科学基金(31941015);内蒙古自治区科技计划项目(2021ZD0010-04)


The I226R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immune response
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在探究非洲猪瘟病毒(African swine fever virus, ASFV) I226R蛋白(I226R protein, pI226R)抑制cGAS-STING信号通路的作用机制。利用双荧光素酶报告系统和实时荧光定量PCR (real-time quantitative PCR, qPCR)证明pI226R显著抑制cGAS-STING通路介导的I型干扰素及干扰素刺激相关基因的产生。免疫共沉淀及激光共聚焦显微镜试验发现pI226R与cGAS蛋白相互作用。免疫印迹分析证明pI226R通过自噬-溶酶体途径促进cGAS蛋白的降解。同时,pI226R阻碍了cGAS与E3泛素连接酶三基序蛋白56 (tripartite motif protein 56, TRIM56)的结合,导致cGAS的单泛素化减弱,从而抑制了cGAS的活化和cGAS-STING通路的激活。总之,本研究证明ASFV pI226R通过拮抗cGAS进而抑制宿主的抗病毒天然免疫反应,进一步增加了对研究ASFV免疫逃逸机制的理解,为疫苗的研发提供了理论基础。

    Abstract:

    This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type I interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.

    参考文献
    [1] 李飞, 徐雷, 朱玲. 非洲猪瘟疫苗研究进展[J]. 病毒学报, 2019, 35(4): 701-707. LI F, XU L, ZHU L. Research progress of African swine fever vaccine[J]. Chinese Journal of Virology, 2019, 35(4): 701-707(in Chinese).
    [2] WANG N, ZHAO DM, WANG JL, ZHANG YL, WANG M, GAO Y, LI F, WANG JF, BU ZG, RAO ZH, WANG XX. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366(6465): 640-644.
    [3] YANG JP, LI SS, FENG T, ZHANG XL, YANG F, CAO WJ, CHEN HJ, LIU HS, ZHANG KS, ZHU ZX, ZHENG HX. African swine fever virus F317L protein inhibits NF-κB activation to evade host immune response and promote viral replication[J]. mSphere, 2021, 6(5): 1-16.
    [4] LIU HS, ZHU ZX, FENG T, MA Z, XUE Q, WU PX, LI P, LI SS, YANG F, CAO WJ, XUE ZN, CHEN HJ, LIU XT, ZHENG HX. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. Journal of Virology, 2021, 95(18): 1-17.
    [5] LI L, FU JY, LI JX, GUO SB, CHEN QC, ZHANG YB, LIU ZK, TAN C, CHEN HC, WANG XR. African swine fever virus pI215L inhibits type I interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation[J]. Journal of Virology, 2022, 96(17): 1-16.
    [6] HUANG L, XU WJ, LIU HY, XUE MD, LIU XH, ZHANG KL, HU L, LI JN, LIU XM, XIANG ZD, ZHENG J, LI CY, CHEN WY, BU ZG, XIONG T, WENG CJ. African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1[J]. The Journal of Immunology, 2021, 207(11): 2754-2769.
    [7] CHEN H, WANG ZZ, GAO XY, LV JX, HU YX, JUNG YS, ZHU SY, WU XD, QIAN YJ, DAI JJ. ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity[J]. Veterinary Research, 2022, 53(1): 1-13.
    [8] WANG XX, WU J, WU YT, CHEN HJ, ZHANG SF, LI JX, XIN T, JIA H, HOU SH, JIANG YT, ZHU HF, GUO XY. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications, 2018, 506(3): 437-443.
    [9] LIU XL, AO D, JIANG S, XIA NW, XU YL, SHAO Q, LUO J, WANG H, ZHENG WL, CHEN NH, MEURENS F, ZHU JZ. African swine fever virus A528R inhibits TLR8 mediated NF-κB activity by targeting p65 activation and nuclear translocation[J]. Viruses, 2021, 13(10): 2046.
    [10] ZHANG ZQ, YUAN B, BAO MS, LU N, KIM T, LIU YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells[J]. Nature Immunology, 2011, 12(10): 959-965.
    [11] ABLASSER A, BAUERNFEIND F, HARTMANN G, LATZ E, FITZGERALD KA, HORNUNG V. RIG-I-dependent sensing of poly (dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate[J]. Nature Immunology, 2009, 10(10): 1065-1072.
    [12] JAKOBSEN MR, PALUDAN SR. IFI16: at the interphase between innate DNA sensing and genome regulation[J]. Cytokine & Growth Factor Reviews, 2014, 25(6): 649-655.
    [13] TAKAOKA A, WANG ZC, CHOI MK, YANAI H, NEGISHI H, BAN T, LU Y, MIYAGISHI M, KODAMA T, HONDA K, OHBA Y, TANIGUCHI T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response[J]. Nature, 2007, 448(7152): 501-505.
    [14] SUN LJ, WU JX, DU FH, CHEN X, CHEN ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786-791.
    [15] SEO GJ, KIM C, SHIN WJ, SKLAN EH, EOH H, JUNG JU. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing[J]. Nature Communications, 2018, 9: 613.
    [16] GUI X, YANG H, LI T, TAN XJ, SHI PQ, LI MH, DU FH, CHEN ZJ. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway[J]. Nature, 2019, 567(7747): 262-266.
    [17] ISHIKAWA H, MA Z, BARBER GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity[J]. Nature, 2009, 461(7265): 788-792.
    [18] ZHANG YY, KE JN, ZHANG JY, YANG JJ, YUE HX, ZHOU XT, QI Y, ZHU RN, MIAO FM, LI Q, ZHANG F, WANG Y, HAN X, MI LJ, YANG JM, ZHANG SF, CHEN T, HU RL. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever[J]. Journal of Virology, 2021, 95(23): 1-16.
    [19] MCNAB F, MAYER-BARBER K, SHER A, WACK A, O’GARRA A. Type I interferons in infectious disease[J]. Nature Reviews Immunology, 2015, 15(2): 87-103.
    [20] LI D, YANG WP, LI LL, LI P, MA Z, ZHANG J, QI XL, REN JJ, RU Y, NIU QL, LIU ZJ, LIU XT, ZHENG HX. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. The Journal of Immunology, 2021, 206(8): 1844-1857.
    [21] LI D, ZHANG J, YANG WP, LI P, RU Y, KANG WF, LI LL, RAN Y, ZHENG HX. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling[J]. Journal of Biological Chemistry, 2021, 297(5): 101190.
    [22] ZHUO YS, GUO ZH, BA TT, ZHANG C, HE LH, ZENG CP, DAI HC. African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin α and NF-κB signaling pathway[J]. Virologica Sinica, 2021, 36(2): 176-186.
    [23] WANG Y, CUI S, XIN T, WANG XX, YU HN, CHEN SY, JIANG YJ, GAO XT, JIANG YT, GUO XY, JIA H, ZHU HF. African swine fever virus MGF360-14L negatively regulates type I interferon signaling by targeting IRF3[J]. Frontiers in Cellular and Infection Microbiology, 2022, 11: 818969.
    [24] Yang KD, HUANG QT, WANG RY, ZENG Y, CHENG MY, XUE Y, SHI CW, YE LP, YANG WT, JIANG YL, WANG JZ, HUANG HB, CAO X, YANG GL, WANG CF. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway[J]. Veterinary Microbiology, 2021, 263: 109265.
    [25] CORREIA S, VENTURA S, PARKHOUSE RM. Identification and utility of innate immune system evasion mechanisms of ASFV[J]. Virus Research, 2013, 173(1): 87-100.
    [26] STONE SS, HESS WR. Antibody response to inactivated preparations of African swine fever virus in pigs[J]. American Journal of Veterinary Research, 1967, 28(123): 475-481.
    [27] ARGILAGUET JM, PÉREZ-MARTÍN E, GALLARDO C, SALGUERO FJ, BORREGO B, LACASTA A, ACCENSI F, DÍAZ I, NOFRARÍAS M, PUJOLS J, BLANCO E, PÉREZ-FILGUEIRA M, ESCRIBANO JM, RODRÍGUEZ F. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells[J]. Vaccine, 2011, 29(33): 5379-5385.
    [28] SUNWOO SY, PÉREZ-NÚÑEZ D, MOROZOV I, SÁNCHEZ E, GAUDREAULT N, TRUJILLO J, MUR L, NOGAL M, MADDEN D, URBANIAK K, KIM I, MA WJ, REVILLA Y, RICHT J. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain[J]. Vaccines, 2019, 7(1): 12.
    [29] NEILAN JG, ZSAK L, LU Z, Burrage TG, Kutish GF, Rock DL. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 2004, 319(2): 337-342.
    [30] HONG JX, CHI XJ, YUAN X, WEN FX, RAI KR, WU L, SONG ZB, WANG S, GUO GJ, CHEN JL. I226R protein of African swine fever virus is a suppressor of innate antiviral responses[J]. Viruses, 2022, 14(3): 575.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李亚波,娄慧聪,赵雨娜,范文辉,焦鹏涛,孙蕾,罗廷荣,刘文军. 非洲猪瘟病毒I226R蛋白抑制cGAS-STING通路介导的天然免疫应答[J]. 生物工程学报, 2023, 39(12): 4796-4808

复制
分享
文章指标
  • 点击次数:207
  • 下载次数: 818
  • HTML阅读次数: 743
  • 引用次数: 0
历史
  • 收稿日期:2023-02-14
  • 录用日期:2023-05-31
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第5997206位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司