不同粒径口蹄疫病毒样颗粒-ZIF-8复合物诱导小鼠的体液免疫效果分析
作者:
基金项目:

国家重点研发计划(2021YFD1800300);国家自然科学基金(32072859,32072847,32002272);甘肃省科技重大专项计划(21ZD3NA001);科技人才与平台计划(202205AF150007)


Evaluation of the humoral immunity in mice induced by foot-and-mouth disease virus-like particles-ZIF-8 complexes with different sizes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为进一步提高口蹄疫(foot-and-mouth disease, FMD)病毒样颗粒(virus-like particles, VLPs)疫苗的免疫效果,本研究采用仿生矿化方法,将Zn2+和2-甲基咪唑按照不同浓度配比制备了不同粒径的FMDV VLPs-沸石咪唑骨架-8 (zeolitic imidazolate framework-8, ZIF-8)复合物,以探究尺寸效应对免疫效果的影响。结果显示,成功制备出3种不同粒径的FMDV VLPs-ZIF-8,粒径分别约为70、100、1 000 nm。细胞毒性和组织病理学试验表明,3种复合物均具有良好的生物安全性。小鼠免疫试验表明,3种复合物均能明显提高中和抗体和特异性抗体水平,并且随着复合物体积的减小,其免疫效果也随之增强。本研究表明,ZIF-8包封FMDV VLPs可显著增强其免疫效果,且具有尺寸依赖性。

    Abstract:

    To further enhance the immune effect of the foot-and-mouth disease (FMD) virus-like particles (VLPs) vaccine, this study prepared FMDV VLPs-zeolitic imidazolate (framework-8, ZIF-8) complexes with different particle sizes. We used a biomimetic mineralization method with Zn2+ and 2-methylimidazole in different concentration ratios to investigate the effect of size on the immunization effect. The results showed that FMDV VLPs-ZIF-8 with three different sizes were successfully prepared, with an approximate size of 70 nm, 100 nm, and 1 000 nm, respectively. Cytotoxicity and animal toxicity tests showed that all three complexes exhibited excellent biological safety. Immunization tests in mice showed that all three complexes enhanced the titers of neutralizing and specific antibodies, and their immune effects improved as the size of the complexes decreased. This study showed that ZIF-8 encapsulation of FMDV VLPs significantly enhanced their immunogenic effect in a size-dependent manner.

    参考文献
    [1] 苗海生, 李乐, 信爱国, 廖德芳, 胡骑, 李华春, 王继华, 朱明旺. 口蹄疫疫苗综述[J]. 上海畜牧兽医通讯, 2010(6): 14-15. MIAO HS, LI L, XIN AG, LIAO DF, HU Q, LI HC, WANG JH, ZHU MW. Review of foot-and-mouth disease vaccine[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2010(6): 14-15(in Chinese).
    [2] KOPLIKU L, RELMY A, ROMEY A, GORNA K, ZIENTARA S, BAKKALI-KASSIMI L, BLAISE-BOISSEAU S. Establishment of persistent foot-and-mouth disease virus (FMDV) infection in MDBK cells[J]. Archives of Virology, 2015, 160(10): 2503-2516.
    [3] DIAZ-SAN SEGUNDO F, MEDINA GN, STENFELDT C, ARZT J, de LOS SANTOS T. Foot-and-mouth disease vaccines[J]. Veterinary Microbiology, 2017, 206: 102-112.
    [4] 卢曾军. 口蹄疫疫苗研究与防控实践[J]. 饲料与畜牧, 2018(6): 1. LU ZJ. Research and control of foot-and-mouth disease vaccine[J]. Feed and Husbandry, 2018(6): 1(in Chinese).
    [5] HARDHAM JM, KRUG P, PACHECO JM, THOMPSON J, DOMINOWSKI P, MOULIN V, GAY CG, RODRIGUEZ LL, RIEDER E. Novel foot-and-mouth disease vaccine platform: formulations for safe and DIVA-compatible FMD vaccines with improved potency[J]. Frontiers in Veterinary Science, 2020, 7: 554305.
    [6] ZDANOWICZ M, CHROBOCZEK J. Virus-like particles as drug delivery vectors[J]. Acta Biochimica Polonica, 2016, 63(3): 469-473.
    [7] WANG ND, ZHANG Y, LEI XN, YU WT, ZHAN Y, WANG DL, ZHANG JX, WANG AB, XIAO LH, JIANG P, YANG Y. Optimized conditions for preserving stability and integrity of porcine circovirus type2 virus-like particles during long-term storage[J]. Journal of Virological Methods, 2017, 243: 146-150.
    [8] DU P, LIU RH, SUN SQ, DONG H, ZHAO RB, TANG RK, DAI JW, YIN H, LUO JX, LIU ZX, GUO HC. Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced[J]. Nanoscale, 2019, 11(47): 22748-22761.
    [9] YANG Y, CHEN Q, WU JP, KIRK TB, XU JK, LIU ZH, XUE W. Reduction-responsive codelivery system based on a metal-organic framework for eliciting potent cellular immune response[[J]. ACS Appl Mater Interfaces, 2018, 10(15): 12463-12473.
    [10] ZOU KY, LI ZX. Frontispiece: controllable syntheses of MOF‐derived materials[J]. Chemistry-a European Journal, 2018, 24(25): 6506-6518.
    [11] CHEN TT, YI JT, ZHAO YY, CHU X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins[J]. Journal of the American Chemical Society, 2018, 140(31): 9912-9920.
    [12] 徐晓微, 张恺, 赵亮, 王丹丹, 杨柏, 林崇韬, 孙宏晨. 不同尺寸二氧化硅纳米颗粒对细胞摄取和功能的研究[C]. 第十次全国牙周病学学术会议, 2014: 1. XU XW, ZHANG K, ZHAO L, WANG DD, YANG B, LIN CT, SUN HC. Effects of SiO2 nanoparticles of different sizes on cell uptake and function[C]. The 10th National Academic Conference on Periodontology, 2014: 1(in Chinese).
    [13] 贾吉磊. 基于碳酸钙微球的乙肝疫苗佐剂构建及免疫增强效果研究[D]. 北京: 中国科学院大学, 博士学位论文, 2017. JIA JL. Fabrication of CaCO3 microspheres and its application as vaccine adjuvants for hepatitis B vaccine[D]. Beijing: Doctoral Dissertation of University of Chinese Academy of Sciences, 2017(in Chinese).
    [14] METWALLY S, STACHEWICZ U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications[J]. Materials Science & Engineering C, Materials for Biological Applications, 2019, 104: 109883.
    [15] GUO HC, SUN SQ, JIN Y, YANG SL, WEI YQ, SUN DH, YIN SH, MA JW, LIU ZX, GUO JH, LUO JX, YIN H, LIU XT, LIU DX. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in Guinea pigs, swine and cattle[J]. Veterinary Research, 2013, 44(1): 1-13.
    [16] CAO YM, LU ZJ, LIU ZX. Foot-and-mouth disease vaccines: progress and problems[J]. Expert Review of Vaccines, 2016, 15(6): 783-789.
    [17] PETROVSKY N. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs[J]. Drug Safety, 2015, 38(11): 1059-1074.
    [18] ZHANG Y, WANG F, JU E, LIU Z, CHEN Z, REN J, QU X. Metal‐organic‐framework‐based vaccine platforms for enhanced systemic immune and memory response[J]. Advanced Functional Materials, 2016, 26(35): 6454-6461.
    [19] LANDGRAF L, MÜLLER I, ERNST P, SCHÄFER M, ROSMAN C, SCHICK I, KÖHLER O, OEHRING H, BREUS VV, BASCHÉ T, SÖNNICHSEN C, TREMEL W, HILGER I. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization[J]. Beilstein Journal of Nanotechnology, 2015, 6: 300-312.
    [20] ROOHANI N, HURRELL R, KELISHADI R, SCHULIN R. Zinc and its importance for human health: an integrative review[J]. Journal of Research in Medical Sciences: the Official Journal of Isfahan University of Medical Sciences, 2013, 18(2): 144-157.
    [21] SUZUKI H, ADLER A, HUANG TW, KURAMOCHI A, OHBA Y, SATO Y, NAKAMURA N, MANIVEL V, EKDAHL K, NILSSON B, ISHIHARA K, TERAMURA Y. Impact of spontaneous liposome modification with phospholipid polymer-lipid conjugates on protein interactions[J]. Science and Technology of Advanced Materials, 2022, 23: 845-857.
    [22] PENG F, XIANG Y, WANG H, HU Y, ZHOU R, HU Y. Biomimetic assembly of spore@ ZIF‐8 microspheres for vaccination[J]. Small, 2022, 18(38): 2204011.
    [23] SHI WD, WANG JZ, FAN XJ, GAO HJ. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(6 Pt 1): 061914.
    [24] PANYAM J, DALI MM, SAHOO SK, MA WX, CHAKRAVARTHI SS, AMIDON GL, LEVY RJ, LABHASETWAR V. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide- co-glycolide) nano- and microparticles[J]. Journal of Controlled Release, 2003, 92(1/2): 173-187.
    [25] OH N, PARK JH. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. International Journal of Nanomedicine, 2014, 9(suppl 1): 51-63.
    [26] KIM S, OH WK, JEONG YS, HONG JY, CHO BR, HAHN JS, JANG J. Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells[J]. Biomaterials, 2011, 32(9): 2342-2350.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李家俊,王俊,张韵,滕志东,董虎,郭慧琛,孙世琪. 不同粒径口蹄疫病毒样颗粒-ZIF-8复合物诱导小鼠的体液免疫效果分析[J]. 生物工程学报, 2023, 39(12): 4837-4848

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 849
  • HTML阅读次数: 553
  • 引用次数: 0
历史
  • 收稿日期:2023-02-02
  • 录用日期:2023-04-23
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第5997206位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司