不同碳源诱导下牦牛瘤胃厌氧真菌Orpinomyces sp. YF3的产酶机制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(31972592,31402102);陕西省重点研发计划(2021NY-019)


Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究体外发酵牦牛瘤胃源厌氧真菌Orpinomyces sp. YF3在不同碳源诱导下的产酶机制,本研究利用厌氧培养管在10 mL基础培养基中分别添加不同碳源复杂度的葡萄糖(glucose, Glu)、滤纸(filter paper, Flp)、微晶纤维素(avicel, Avi)各8 g/L作为唯一碳源进行体外发酵,检测发酵液中的纤维降解酶活性和挥发性脂肪酸,并利用转录组学探究Orpinomyces sp. YF3的产酶机制。结果表明葡萄糖诱导下的发酵液中羧甲基纤维素酶、微晶纤维素酶、滤纸酶和木聚糖酶的活性,及乙酸的比例显著升高(P<0.05),丙酸、丁酸、异丁酸的比例显著降低(P<0.05)。进一步分析发现与纤维降解酶相关的差异表达基因(differentially expressed genes, DEGs)在Glu组中显著上调。基因本体论(gene ontology, GO)功能富集显示DEGs主要集中在木聚糖酶、纤维素酶、葡萄糖和碳水化合物等的分解代谢过程及相关酶活性,京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路分析富集到的纤维降解酶相关的差异通路主要是淀粉和蔗糖代谢途径、其他聚糖降解途径。以上结果表明,以葡萄糖为碳源底物的Orpinomyces sp. YF3可增加纤维素降解酶活性,提高乙酸比例,通过调控纤维降解酶基因的表达及相关代谢通路来提高对底物的降解能力,提高能量利用效率。这为Orpinomyces sp. YF3在实际生产中的应用提供了理论基础。

    Abstract:

    In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P<0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P<0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, b-glucan metabolic process, cellulase activity, endo-1,4-b-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.

    参考文献
    相似文献
    引证文献
引用本文

杜雪儿,周琳琳,张帆,李永,赵聪聪,王腊梅,姚军虎,曹阳春. 不同碳源诱导下牦牛瘤胃厌氧真菌Orpinomyces sp. YF3的产酶机制[J]. 生物工程学报, 2023, 39(12): 4927-4938

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-05
  • 最后修改日期:
  • 录用日期:2023-05-15
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第位访问者
生物工程学报 ® 2024 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司