苹果PDHB-1基因家族的鉴定与表达分析
作者:
基金项目:

甘肃省大学生创新创业训练计划项目(S202210733008);甘肃省科技计划项目(21JR7RA845);甘肃省科技重大专项(22ZD6NA045)


Identification and expression analysis of apple PDHB-1 gene family
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    丙酮酸脱氢酶E1组分β亚基-1 (pyruvate dehydrogenase E1 component subunit beta-1, PDHB-1)基因是编码丙酮酸脱氢酶复合物E1酶β亚基的基因,在果实酸度积累过程中具有重要作用。为了探究苹果(Malus domestica L.) PDHB-1家族的进化特征及其在不同酸含量苹果中的表达情况,本研究利用NCBI、Pfam等数据库和ClustalX、MEGA、TBtools等软件进行生物信息学分析,通过结合可滴定酸含量测定与实时荧光定量PCR (quantitative real-time PCR, qRT-PCR)分析,获得该家族基因在‘艾斯达’和‘成纪1号’ 2个不同酸含量的苹果中的表达情况。PDHB-1家族主要定位于叶绿体、细胞质和线粒体中,α-螺旋和不规则卷曲是该家族二级结构形成的主要因素。组织特异性表达谱显示大部分成员的表达量在果实中高于其他组织。qRT-PCR结果表明,大部分成员其表达量变化趋势与可滴定酸含量变化趋势一致,在果皮中,有14个成员的表达水平在酸含量较高的‘艾斯达’苹果中显著高于酸含量较低的‘成纪1号’,其中MdPDHB1-15差异最显著;在果肉中,17个成员的表达水平在‘艾斯达’苹果中显著高于‘成纪1号’,MdPDHB1-01表达量最高。预测苹果PDHB-1基因家族在苹果果实酸度积累过程中有重要调控作用。

    Abstract:

    Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the β-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple ‘Asda’ and ‘Chengji No.1’ with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in ‘Asda’ apples with high acid content were significantly higher than that in ‘Chengji No.1’ apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in ‘Asda’ apples were significantly higher than that in ‘Chengji No.1’ apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.

    参考文献
    [1] 王皎, 李赫宇, 刘岱琳, 宋新波, 於洪建. 苹果的营养成分及保健功效研究进展[J]. 食品研究与开发, 2011, 32(1): 164-168. WANG J, LI HY, LIU DL, SONG XB, YU HJ. Research progress of apple nutrition components and health function[J]. Food Research and Development, 2011, 32(1): 164-168(in Chinese).
    [2] 张全艳. 苹果硝态氮应答基因MdBT2调控苹果酸积累的机理研究[D]. 泰安: 山东农业大学博士学位论文, 2021. ZHANG QY. Molecular mechanism of action of nitrate-responsive gene MdBT2 involved in the regulation of malate accumulation in apple[D]. Taian: Doctoral Dissertation of Shandong Agricultural University, 2021(in Chinese).
    [3] 于建强. 苹果bHLH转录因子MdbHLH3在调控果实糖酸代谢中的功能研究[D]. 泰安: 山东农业大学博士学位论文, 2022. YU JQ. The apple bHLH transcription factor MdbHLH3 functions in regulating the fruit sugar and malate metabolism[D]. Taian: Doctoral Dissertation of Shandong Agricultural University, 2022(in Chinese).
    [4] BEHAL RD. Erratum: a second gene encoding the plastidic pyruvate dehydrogenase beta-subunit in Arabidopsis (PGR-99-136) (Plant Physiology (1999) 121(312))[J]. Plant Physiology, 1999, 121: 1057.
    [5] 崔玉娟, 刘晓晴. 丙酮酸脱氢酶复合体的研究进展及应用[J]. 西北师范大学学报(自然科学版), 2007, 43(6): 79-83. CUI YJ, LIU XQ. Development and application of pyruvate dehydrogenase complex[J]. Journal of Northwest Normal University (Natural Science Edition), 2007, 43(6): 79-83(in Chinese).
    [6] 齐彤辉, 高萌, 袁阳阳, 李明军, 马锋旺, 马百全. 苹果酸度相关基因MdPH1的克隆、表达及亚细胞定位分析[J]. 植物科学学报, 2019, 37(6): 767-774. QI TH, GAO M, YUAN YY, LI MJ, MA FW, MA BQ. Cloning expression analysis and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774(in Chinese).
    [7] 寇单单, 张叶, 王朋飞, 李东东, 张学英, 陈海江. ‘仓方早生’桃及其早熟芽变果实蔗糖和苹果酸积累与相关基因表达[J]. 园艺学报, 2019, 46(12): 2286-2298. KOU DD, ZHANG Y, WANG PF, LI DD, ZHANG XY, CHEN HJ. Differences in sucrose and malic acid accumulation and the related gene expression in ‘Kurakato Wase’ peach and its early-ripening mutant[J]. Acta Horticulturae Sinica, 2019, 46(12): 2286-2298(in Chinese).
    [8] 赵静, 周多妮, 朱宏路, 张洋, 谢兴斌, 方从兵. FaMYB73调控草莓果实苹果酸合成的研究[J]. 西北植物学报, 2020, 40(10): 1638-1645. ZHAO J, ZHOU DN, ZHU HL, ZHANG Y, XIE XB, FANG CB. R2R3-MYB transcription factor FaMYB73 involved in malic acid accumulation of strawberry fruits[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1638-1645(in Chinese).
    [9] 韩寿坤. 苹果采后苹果酸含量及其转运体基因MdALMT9调控机制研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2020. HAN SK. Regulation mechanisms of malate content and malate transporter gene MdALMT9 in postharvest apple fruit[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2020(in Chinese).
    [10] 巫伟峰, 陈明杰, 祁芳斌, 陈发兴. 李果实有机酸组成特征及其与苹果酸转运体基因PsALMT9PstDT的相关性[J]. 西北植物学报, 2020, 40(8): 1356-1363. WU WF, CHEN MJ, QI FB, CHEN FX. Organic acid composition characteristics and its correlation with malate transporter genes PsALMT9 and PstDT in plum fruit[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1356-1363(in Chinese).
    [11] 马聪. 草莓果实糖酸相关FaSSADHFaSDH2-2基因的克隆与表达分析[D]. 扬州: 扬州大学硕士学位论文, 2021. MA C. Cloning and expression analysis of sugar and acid related FaSSADH and FaSDH2-2 genes in strawberry fruit[D]. Yangzhou: Master’s Thesis of Yangzhou University, 2021(in Chinese).
    [12] 高萌. 苹果种质资源有机酸含量评价及酸含量调控候选基因MtPEPP功能分析[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020. GAO M. Evaluation of organic acid content in apple germplasm resources and functional analysis of candidate gene MtPEPP for acidity[D]. Yangling: Master’s Thesis of Northwest A&F University, 2020(in Chinese).
    [13] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009: 262-264. ZHANG ZL, QU WJ, LI XF. Experimental Guidance of Plant Physiology[M]. 4th ed. Beijing: Higher Education Press, 2009: 262-264(in Chinese).
    [14] YAMAKI S. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids[J]. Plant and Cell Physiology, 1984, 25(1): 151-166.
    [15] 吴梦嘉. 枣和酸枣有机酸含量差异分析以及关键基因筛选[D]. 泰安: 山东农业大学硕士学位论文, 2021. WU MJ. Difference analysis of organic acid content and screening of key genes between Jujube and sour Jujube[D]. Taian: Master’s Thesis of Shandong Agricultural University, 2021(in Chinese).
    [16] 巫伟峰. 李果实苹果酸转运体的克隆表达及其有机酸的关联性分析[D]. 福州: 福建农林大学硕士学位论文, 2017. WU WF. Cloning and expression analysis of malate transporter in plum fruit and analysis of the correlation of organic acids[D]. Fuzhou: Master’s Thesis of Fujian Agriculture and Forestry University, 2017(in Chinese).
    [17] YE J, WANG X, HU TX, ZHANG FX, WANG B, LI CX, YANG TX, LI HX, LU YE, GIOVANNONI JJ, ZHANG YY, YE ZB. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell, 2017, 29(9): 2249-2268.
    [18] HU DG, SUN CH, MA QJ, YOU C, CHENG L, HAO Y. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J]. Plant Physiology, 2015, 170: 1315-1330.
    [19] HU DG, LI YY, ZHANG QY, LI M, SUN CH, YU JQ, HAO YJ. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J]. The Plant Journal, 2017, 91(3): 443-454.
    [20] LAI B, DU LN, HU B, WANG D, HUANG XM, ZHAO JT, WANG HC, HU GB. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification[J]. BMC Plant Biology, 2019, 19(1): 1-13.
    [21] 许林林. 梨液泡膜上PbrALMT9PbrTDT1PbrVHA-c4基因调控有机酸积累的功能研究[D]. 南京: 南京农业大学博士学位论文, 2018. XU LL. Functional analysis of tonoplast-localized genes, PbrALMT9, PbrTDT1 and PbrVHA-c4, regulate the accumulation of organic acids in pear[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2018(in Chinese).
    [22] 龙涛, 王仙慧, 陈邦兰, 王治杰, 尹茂灵, 万心言, 刘继恺, 高永峰. 过表达SlANT1基因对番茄生长和果实品质的影响[J]. 分子植物育种, 2023, 21(2): 495-502. LONG T, WANG XH, CHEN BL, WANG ZJ, YIN ML, WAN XY, LIU JK, GAO YF. Effects of SlANT1 gene overexpression on the growth and fruit quality of tomato[J]. Molecular Plant Breeding, 2023, 21(2): 495-502(in Chinese).
    [23] 王宁. 桃PpTST2基因的克隆及功能鉴定[D]. 泰安: 山东农业大学硕士学位论文, 2022. WANG N. Cloning and functional identification of PpTST2 gene in peach[D]. Taian: Master’s Thesis of Shandong Agricultural University, 2022(in Chinese).
    [24] 曹明浩. 柑桔果实发育过程中甜度相关基因的系统生物学与反向生物学研究[D]. 重庆: 西南大学博士学位论文, 2020. CAO MH. Systems biology and reverse genetic studies of sweetness-related genes during citrus fruit development[D]. Chongqing: Doctoral Dissertation of Southwest University, 2020(in Chinese).
    [25] 谢成宇. 枇杷果实发育过程中NADP-MEPEPC基因的表达[D]. 福州: 福建农林大学硕士学位论文, 2008. XIE CY. NADP-ME and PEPC gene expression during the fruit development of loquat[D]. Fuzhou: Master’s Thesis of Fujian Agriculture and Forestry University, 2008(in Chinese).
    [26] 罗丽娟. 环境因子对柑橘柠檬酸积累及其相关基因的影响[D]. 武汉: 华中农业大学硕士学位论文, 2019. LUO LJ. Effects of environmental factors on citric acid accumulation and its related genes in citrus[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2019(in Chinese).
    [27] 王寒阳. GA3处理对两个鲜食葡萄品种品质的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2017. WANG HY. Effect of GA3 treatment on quality of two table grape varieties[D]. Yangling: Master’s Thesis of Northwest A&F University, 2017(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析[J]. 生物工程学报, 2023, 39(12): 4965-4981

复制
分享
文章指标
  • 点击次数:304
  • 下载次数: 1124
  • HTML阅读次数: 407
  • 引用次数: 0
历史
  • 收稿日期:2023-01-06
  • 录用日期:2023-05-23
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第5991417位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司