Abstract:Transmembrane emp24 domain (TMED) gene is closely related to immune response, signal transduction, growth and disease development in mammals. However, only the Drosophila TMED gene has been reported on insects. We identified the TMED family genes of silkworm, Tribolium castaneum, tobacco moth and Italian bee from their genomes, and found that the TMED family gene composition patterns of one α-class, one β-class, one δ-class and several γ-classes arose in the common ancestor of pre-divergent Hymenoptera insects, while the composition of Drosophila TMED family members has evolved in a unique pattern. Insect TMED family γ-class genes have evolved rapidly, diverging into three separate subclasses, TMED6-like, TMED5-like and TMED3-like. The TMED5-like gene was lost in Hymenoptera, duplicated in the ancestors of Lepidoptera and duplicated in Drosophila. Insect TMED protein not only has typical structural characteristics of TMED, but also has obvious signal peptide. There are seven TMED genes in silkworm, distributed in six chromosomes. One of seven is single exon and others are multi-exons. The complete open reading frame (ORF) sequences of seven TMED genes of silkworm were cloned from larval tissues and registered in GenBank database. BmTMED1, BmTMED2 and BmTMED6 were expressed in all stages and tissues of the silkworm, and all genes were expressed in the 4th and 5th instar and silk gland of the silkworm. The present study revealed the composition pattern of TMED family members, their γ class differentiation and their evolutionary history, providing a basis for further studies on TMED genes in silkworm and other insects.