BTB蛋白泛素化介导植物发育和逆境应答的研究进展
作者:
基金项目:

国家自然科学基金(31872123);重庆市自然科学基金(cstc2019jcyj-msxmX0333);中央高校项目(XDJK2020B060);重庆市级大学生创新创业训练计划(S202210635079)


Advances on BTB protein ubiquitination mediated plant development and stress response
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [101]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    BTB (broad-complex, tramtrack, and bric-à-brac)结构域是在真核生物中发现的高度保守的蛋白质相互作用基序。含有BTB结构域的一类蛋白统称为BTB蛋白,它们广泛参与转录调控、蛋白质降解等过程。越来越多的研究表明,该基因在植物生长发育、生物与非生物胁迫等生理过程中具有重要的作用。本文以蛋白结构域为基础,系统总结了该基因家族蛋白在泛素化介导植物发育和逆境应答等过程中的研究进展,为植物中该类基因的研究提供了参考。

    Abstract:

    The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.

    参考文献
    [1] ZOLLMAN S, GODT D, PRIVÉ GG, COUDERC JL, LASKI FA. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22):10717-10721.
    [2] BARDWELL VJ, TREISMAN R. The POZ domain:a conserved protein-protein interaction motif[J]. Genes & Development, 1994, 8(14):1664-1677.
    [3] GODT D, COUDERC J, CRAMTON S, LASKI F. Pattern formation in the limbs of Drosophila:bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus[J]. Development, 1993, 119(3):799-812.
    [4] PEREZ-TORRADO R, YAMADA D, DEFOSSEZ PA. Born to bind:the BTB protein-protein interaction domain[J]. BioEssays, 2006, 28(12):1194-1202.
    [5] CHAHARBAKHSHI E, JEMC JC. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins:critical regulators of development[J]. Genesis, 2016, 54(10):505-518.
    [6] CHENG DJ, QIAN WL, MENG M, WANG YH, PENG J, XIA QY. Identification and expression profiling of the BTB domain-containing protein gene family in the silkworm, Bombyx mori[J]. International Journal of Genomics, 2014, 2014:1-14.
    [7] STOGIOS PJ, DOWNS GS, JAUHAL JJS, NANDRA SK, PRIVÉ GG. Sequence and structural analysis of BTB domain proteins[J]. Genome Biology, 2005, 6(10):1-18.
    [8] PETROSKI MD, DESHAIES RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nature Reviews Molecular Cell Biology, 2005, 6(1):9-20.
    [9] HUA ZH, VIERSTRA RD. The cullin-RING ubiquitin-protein ligases[J]. Annual Review of Plant Biology, 2011, 62:299-334.
    [10] JIN JP, CARDOZO T, LOVERING RC, ELLEDGE SJ, PAGANO M, HARPER JW. Systematic analysis and nomenclature of mammalian F-box proteins[J]. Genes & Development, 2004, 18(21):2573-2580.
    [11] GAGNE JM, DOWNES BP, SHIU SH, DURSKI AM, VIERSTRA RD. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2002, 99(17):11519-11524.
    [12] SARIKAS A, XU XS, FIELD LJ, PAN ZQ. The Cullin7 E3 ubiquitin ligase:a novel player in growth control[J]. Cell Cycle, 2008, 7(20):3154-3161.
    [13] GIEFFERS C, SCHLEIFFER A, PETERS JM. Cullins and cell cycle control[J]. Protoplasma, 2000, 211(1/2):20-28.
    [14] XU L, WEI Y, REBOUL J, VAGLIO P, SHIN TH, VIDAL M, ELLEDGE SJ, HARPER JW. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3[J]. Nature, 2003, 425(6955):316-321.
    [15] PINTARD L, WILLIS JH, WILLEMS A, JOHNSON JL F, SRAYKO M, KURZ T, GLASER S, MAINS PE, TYERS M, BOWERMAN B, PETER M. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase[J]. Nature, 2003, 425(6955):311-316.
    [16] PARK HH. Structure of TRAF family:current understanding of receptor recognition[J]. Frontiers in Immunology, 2018, 9:1999.
    [17] GENSCHIK P, SUMARA I, LECHNER E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s):cellular functions and disease implications[J]. The EMBO Journal, 2013, 32(17):2307-2320.
    [18] GINGERICH DJ, GAGNE JM, SALTER DW, HELLMANN H, ESTELLE M, MA LG, VIERSTRA RD. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis[J]. Journal of Biological Chemistry, 2005, 280(19):18810-18821.
    [19] JULIAN J, COEGO A, LOZANO-JUSTE J, LECHNER E, WU Q, ZHANG X, MERILO E, BELDA-PALAZÓN B, PARK SY, CUTLER S, AN CC, GENSCHIK P, RODRIGUEZ PL. The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116:15725-15734.
    [20] LECHNER E, LEONHARDT N, EISLER H, PARMENTIER Y, ALIOUA M, JACQUET H, LEUNG J, GENSCHIK P. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling[J]. Developmental Cell, 2011, 21(6):1116-1128.
    [21] CHEN L, LEE JH, WEBER H, TOHGE T, WITT S, ROJE S, FERNIE AR, HELLMANN H. Arabidopsis BPM proteins function as substrate adaptors to a CULLIN3-based E3 ligase to affect fatty acid metabolism in plants[J]. The Plant Cell, 2013, 25(6):2253-2264.
    [22] MORIMOTO K, OHAMA N, KIDOKORO S, MIZOI J, TAKAHASHI F, TODAKA D, MOGAMI J, SATO H, QIN F, KIM JS, FUKAO Y, FUJIWARA M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):E8528-E8536.
    [23] SWINNEN G, de MEYER M, POLLIER J, MOLINA-HIDALGO FJ, CEULEMANS E, VENEGAS-MOLINA J, de MILDE L, FERNÁNDEZ-CALVO P, RON M, PAUWELS L, GOOSSENS A. The basichelix-loop-helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive andstress-inducible specialized metabolism in tomato[J]. New Phytologist, 2022, 236(3):911-928.
    [24] CHICO JM, LECHNER E, FERNANDEZ-BARBERO G, CANIBANO E, GARCÍA-CASADO G, FRANCO-ZORRILLA JM, HAMMANN P, ZAMARREÑO AM, GARCÍA-MINA JM, RUBIO V, GENSCHIK P, SOLANO R. CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11):6205-6215.
    [25] LI JB, MENG Y, ZHANG KX, LI Q, LI SJ, XU BL, GEORGIEV MI, ZHOU ML. Jasmonic acid-responsive RRTF1 transcription factor controls DTX18 gene expression in hydroxycinnamic acid amide secretion[J]. Plant Physiology, 2021, 185(2):369-384.
    [26] CHEN L, BERNHARDT A, LEE J, HELLMANN H. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases[J]. Molecular Plant, 2014:242-250.
    [27] ŠKILJAICA A, LECHNER E, JAGIĆ M, MAJSEC K, MALENICA N, GENSCHIK P, BAUER N. The protein turnover of Arabidopsis BPM1 is involved in regulation of flowering time and abiotic stress response[J]. Plant Molecular Biology, 2020, 102(4-5):359-372.
    [28] HONG L, NIU FF, LIN YS, WANG S, CHEN LY, JIANG LW. MYB106 is a negative regulator and a substrate for CRL3BPM E3 ligase in regulating flowering time in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2021, 63(6):1104-1119.
    [29] CHEN LY, HELLMANN H. Plant E3 ligases:flexible enzymes in a sessile world[J]. Molecular Plant, 2013, 6(5):1388-1404.
    [30] BAN ZN, ESTELLE M. CUL3 E3 ligases in plant development and environmental response[J]. Nature Plants, 2021, 7(1):6-16.
    [31] CHRISTIANS MJ, GINGERICH DJ, HANSEN M, BINDER BM, KIEBER JJ, VIERSTRA RD. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels[J]. The Plant Journal, 2009, 57(2):332-345.
    [32] YOON GM, KIEBER JJ. ACC synthase and its cognate E3 ligase are inversely regulated by light[J]. Plant Signaling & Behavior, 2013, 8(12):e26478.
    [33] DU H, WU N, CUI F, YOU L, LI X, XIONG L. A homolog of ETHYLENE OVERPRODUCER, OsETOL 1, differentially modulates drought and submergence tolerance in rice[J]. The Plant Journal, 2014, 78(5):834-849.
    [34] WANG KLC, YOSHIDA H, LURIN C, ECKER JR. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950.
    [35] THOMANN A, LECHNER E, HANSEN M, DUMBLIAUSKAS E, PARMENTIER Y, KIEBER J, SCHERES B, GENSCHIK P. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and-independent mechanisms[J]. PLoS Genetics, 2009, 5(1):e1000328.
    [36] ROCHON A, BOYLE P, WIGNES T, FOBERT PR, DESPRÉS C. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines[J]. The Plant Cell, 2006, 18(12):3670-3685.
    [37] CAO H, GLAZEBROOK J, CLARKE JD, VOLKO S, DONG XN. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell, 1997, 88(1):57-63.
    [38] DELANEY TP, FRIEDRICH L, RYALS JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14):6602-6606.
    [39] CAO H, BOWLING SA, GORDON AS, DONG X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance[J]. The Plant Cell, 1994, 6(11):1583-1592.
    [40] WU Y, ZHANG D, CHU JY, BOYLE P, WANG Y, BRINDLE ID, de LUCA V, DESPRÉS C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1(6):639-647.
    [41] WANG W, WITHERS J, LI H, ZWACK PJ, RUSNAC DV, SHI H, LIU LJ, YAN SP, HINDS TR, GUTTMAN M, DONG XN, ZHENG N. Structural basis of salicylic acid perception by Arabidopsis NPR proteins[J]. Nature, 2020, 586(7828):311-316.
    [42] JIN HS, CHOI SM, KANG MJ, YUN SH, KWON DJ, NOH YS, NOH B. Salicylic acid-induced transcriptional reprogramming by the HAC- NPR1-TGA histone acetyltransferase complex in Arabidopsis[J]. Nucleic Acids Research, 2018, 46(22):11712-11725.
    [43] CHEN J, MOHAN R, ZHANG YQ, LI M, CHEN H, PALMER IA, CHANG M, QI G, SPOEL SH, MENGISTE T, WANG DW, LIU FQ, FU ZQ. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8[J]. Plant Physiology, 2019, 181(1):289-304.
    [44] FU ZQ, YAN SP, SALEH A, WANG W, RUBLE J, OKA N, MOHAN R, SPOEL SH, TADA Y, ZHENG N, DONG XN. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants[J]. Nature, 2012, 486(7402):228-232.
    [45] CHANG M, ZHAO JP, CHEN H, LI GY, CHEN J, LI M, PALMER IA, SONG JQ, ALFANO JR, LIU FQ, FU ZQ. PBS3 protects EDS1 from proteasome-mediated degradation in plant immunity[J]. Molecular Plant, 2019, 12(5):678-688.
    [46] ZAVALIEV R, MOHAN R, CHEN TY, DONG XN. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5):1093-1108.
    [47] CHAHTANE H, ZHANG B, NORBERG M, LEMASSON M, THÉVENON E, BAKÓ L, BENLLOCH R, HOLMLUND M, PARCY F, NILSSON O, VACHON G. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis[J]. New Phytologist, 2018, 220(2):579-592.
    [48] ROBERT HS, QUINT A, BRAND D, VIVIAN-SMITH A, OFFRINGA R. BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development[J]. The Plant Journal, 2009, 58(1):109-121.
    [49] DU LQ, POOVAIAH BW. A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation:interaction with fsh/Ring3 class transcription activators[J]. Plant Molecular Biology, 2004, 54(4):549-569.
    [50] MANDADI KK, MISRA A, REN SX, MCKNIGHT TD. BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis[J]. Plant Physiology, 2009, 150(4):1930-1939.
    [51] AN JP, ZHANG XW, BI SQ, YOU CX, WANG XF, HAO YJ. Mdb HLH 93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways[J]. New Phytologist, 2019, 222(2):735-751.
    [52] AN JP, LI R, QU FJ, YOU CX, WANG XF, HAO YJ. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. The Plant Journal, 2018, 96(3):562-577.
    [53] ZHAO Q, REN YR, WANG QJ, WANG XF, YOU CX, HAO YJ. Ubiquitination-related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis[J]. Plant Physiology, 2016, 172(3):1973-1988.
    [54] VIVIANA A, VIDAL ELENA A, TOMAS P, SIMÓN A, DELPHINE M, EMMANUEL G, GUTIÉRREZ RODRIGO A. Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency[J]. Plant Physiology, 2016, 171(2):1523-1532.
    [55] USADEL B, BLÄSING OE, GIBON Y, RETZLAFF K, HÖHNE M, GÜNTHER M, STITT M. Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes[J]. Plant Physiology, 2008, 146(4):1834-1861.
    [56] BLÄSING O, GIBON Y, GÜNTHER M, HÖHNE M, MORCUENDE R, OSUNA D, THIMM O, USADEL B, SCHEIBLE W, STITT M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis[J]. The Plant Cell, 2005, 17(12):3257-3281.
    [57] WANG RC, TISCHNER R, GUTIÉRREZ R, HOFFMAN M, XING XJ, CHEN MS, CORUZZI G, CRAWFORD N. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis[J]. Plant Physiology, 2004, 136:2512-2522.
    [58] SCHEIBLE WR, MORCUENDE R, CZECHOWSKI T, FRITZ C, OSUNA D, PALACIOS-ROJAS N, SCHINDELASCH D, THIMM O, UDVARDI MK, STITT M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiology, 2004, 136(1):2483-2499.
    [59] REN YR, ZHAO Q, YANG YY, ZHANG R, WANG XF, ZHANG TE, YOU CX, HUO HQ, HAO YJ. Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth[J]. Plant Physiology, 2021, 186(1):750-766.
    [60] TRAN LS P, NAKASHIMA K, SAKUMA Y, SIMPSON SD, FUJITA Y, MARUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9):2481-2498.
    [61] JI XL, LI HL, QIAO ZW, ZHANG JC, SUN WJ, WANG CK, YANG K, YOU CX, HAO YJ. The BTB-TAZ protein MdBT2 negatively regulates the drought stress response by interacting with the transcription factor MdNAC143 in apple[J]. Plant Science, 2020, 301:110689.
    [62] 陈西霞. 苹果BTB蛋白MdBT2与MdNAC1互作负调控铁离子稳态[D]. 泰安:山东农业大学硕士学位论文, 2022. CHEN XX. BTB protein MdBT2 interacts with MdNAC to negatively regulates iron homeostasis in apple[D]. Tai'an:Master's Thesis of Shandong Agricultural University, 2022(in Chinese).
    [63] JI XL, LI HL, QIAO ZW, ZHANG JC, SUN WJ, YOU CX, HAO YJ, WANG XF. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple[J]. Plant Physiology, 2022, 189(2):1005-1020.
    [64] WANG XF, AN JP, LIU X, SU L, YOU CX, HAO YJ. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor[J]. Plant Physiology, 2018, 178(2):890-906.
    [65] AN JP, ZHANG XW, BI SQ, YOU CX, WANG XF, HAO YJ. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple[J]. The Plant Journal, 2020, 101(3):573-589.
    [66] AN JP, LIU YJ, ZHANG XW, BI SQ, WANG XF, YOU CX, HAO YJ. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple[J]. Journal of Experimental Botany, 2020, 71(10):3094-3109.
    [67] AN JP, ZHANG XW, YOU CX, BI SQ, WANG XF, HAO YJ. MdWRKY 40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB 1 and undergoes MdBT 2-mediated degradation[J]. New Phytologist, 2019, 224(1):380-395.
    [68] AN JP, YAO JF, XU RR, YOU CX, WANG XF, HAO YJ. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation[J]. Plant, Cell & Environment, 2018, 41(11):2678-2692.
    [69] GANGAPPA SN, BOTTO JF. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10):1353-1365.
    [70] AN JP, WANG XF, ZHANG XW, BI SQ, YOU CX, HAO YJ. MdBBX 22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation[J]. Plant Biotechnology Journal, 2019, 17(12):2231-2233.
    [71] KANG H, ZHANG TT, LI YY, KUI LW, ESPLEY RV, DU YP, GUAN QM, MA FW, HAO YJ, YOU CX, WANG XF. The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis[J]. Plant Physiology, 2022, 190(1):305-318.
    [72] REN YR, ZHAO Q, YANG YY, ZHANG TE, WANG XF, YOU CX, HAO YJ. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation[J]. Horticulture Research, 2021, 8(1):22.
    [73] KELLER CK, RADWAN O. The functional role of 14-3-3 proteins in plant-stress interactions[J]. i-ACES, 2015, 1(2):100-110.
    [74] IRIGOYEN S, RAMASAMY M, MISRA A, MCKNIGHT TD, MANDADI KK. A BTB-TAZ protein is required for gene activation by cauliflower mosaic virus 35S multimerized enhancers[J]. Plant Physiology, 2022, 188(1):397-410.
    [75] MISRA A, MCKNIGHT TD, MANDADI KK. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana[J]. Plant Molecular Biology, 2018, 96(4/5):393-402.
    [76] 刘玲玉, 李紫媛, 张思怡, 曹宏哲, 张康, 时翠平, 邢继红. 玉米BTB-TAZ蛋白与转录因子ZmBET10的互作分析[J]. 分子植物育种, 2022:1-11. LIU LY, LI ZY, ZHANG SY, CAO HZ, ZHANG K, SHI CP, XING JH. Study on the interaction of transcription factors ZmBET10 with maize BTB-TAZ protein[J]. Molecular Plant Breeding, 2022:1-11(in Cinese).
    [77] 刘鹏飞, 张康, 李玉琦, 周帆, 白华, 藏金萍, 曹宏哲, 邢继红, 董金皋. 玉米BTB家族基因的鉴定与表达规律分析[J]. 植物病理学报, 2021, 51(2):268-281. LIU PF, ZHANG K, LI YQ, ZHOU F, BAI H, (CANG/ZANG) JP, CAO HZ, XING JH, DONG JG. Identification and expression analysis of BTB family genes in Zea mays[J]. Acta Phytopathologica Sinica, 2021, 51(2):268-281(in Chinese).
    [78] LISCUM E, ASKINOSIE SK, LEUCHTMAN DL, MORROW J, WILLENBURG KT, COATS DR. Phototropism:growing towards an understanding of plant movement[J]. The Plant Cell, 2014, 26(1):38-55.
    [79] KEN HG, TSUCHIDA-MAYAMA T, YAMADA M, SAKAI T. Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses[J]. The Plant Cell, 2015, 27(4):1098-1112.
    [80] CHRISTIE JM, SUETSUGU N, SULLIVAN S, WADA M. Shining light on the function of NPH3/RPT2-like proteins in phototropin signaling[J]. Plant Physiology, 2018, 176(2):1015-1024.
    [81] SAKAI T, WADA T, ISHIGURO S, OKADA K. RPT2. A signal transducer of the phototropic response in Arabidopsis[J]. The Plant Cell, 2000, 12(2):225-236.
    [82] HUALA E, OELLER PW, LISCUM E, HAN IS, LARSEN E, BRIGGS WR. Arabidopsis NPH1:a protein kinase with a putative redox-sensing domain[J]. Science, 1997, 278(5346):2120-2123.
    [83] BRIGGS WR, BECK CF, CASHMORE AR, CHRISTIE JM, HUGHES J, JARILLO JA, KAGAWA T, KANEGAE H, LISCUM E, NAGATANI A, OKADA K, SALOMON M, RUDIGER W, SAKAI T, TAKANO M, WADA M, WATSON JC. The phototropin family of photoreceptors[J]. The Plant Cell, 2001, 13(5):993-997.
    [84] MOTCHOULSKI A, LISCUM E. Arabidopsis NPH3:a NPH1 photoreceptor-interacting protein essential for phototropism[J]. Science, 1999, 286(5441):961-964.
    [85] DIANA R, PEDMALE ULLAS V, JOHANNA M, SHRIKESH S, ESTHER L, TANG XB, ZHENG N, MARK H, PASCAL G, EMMANUEL L. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3(NPH3)[J]. The Plant Cell, 2011, 23(10):3627-3640.
    [86] BLAKESLEE JOSHUA J, ANINDITA B, ANN PW, MAKAM SRINIVAS N, MURPHY ANGUS S. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses[J]. Plant Physiology, 2004, 134(1):28-31.
    [87] CHRISTIANS MATTHEW J, GINGERICH DEREK J, HUA ZH, LAUER TIMOTHY D, VIERSTRA RICHARD D. The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis[J]. Plant Physiology, 2012, 160(1):118-134.
    [88] DEVIREDDY AR, LISCUM E, MITTLER R. Phytochrome B is required for systemic stomatal responses and reactive oxygen species signaling during light stress[J]. Plant Physiology, 2020, 184(3):1563-1572.
    [89] NI WM, XU SL, TEPPERMAN JM, STANLEY DJ, MALTBY DA, GROSS JD, BURLINGAME AL, WANG ZY, QUAIL PH. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis[J]. Science, 2014, 344(6188):1160-1164.
    [90] ZHANG B, HOLMLUND M, LORRAIN S, NORBERG M, BAKO L, FANKHAUSER C, NILSSON O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance[J]. Elife, 2017, 6:e26759.
    [91] SCHON M, BAXTER C, XU C, ENUGUTTI B, NODINE MD, DEAN C. Antagonistic activities of cotranscriptional regulators within an early developmental window set FLC expression level[J]. Proceedings of the National Academy of Sciences, 2021, 118(17):e2102753118.
    [92] HU XY, KONG XX, WANG CT, MA L, ZHAO JJ, WEI JJ, ZHANG XM, LOAKE GJ, ZHANG TC, HUANG JL, YANG YP. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization[J]. The Plant Cell, 2014, 26(12):4763-4781.
    [93] LI JH, SU XX, WANG YL, YANG W, PAN Y, SU CG, ZHANG XG.. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato[J]. Genes and Genomics, 2018, 40(1):1-15.
    [94] WAN X, PENG L, XIONG J, LI XY, WANG JM, LI XF, YANG Y. AtSIBP1, a novel BTB domain-containing protein, positively regulates salt signaling in Arabidopsis thaliana[J]. Plants, 2019, 8(12):573.
    [95] MARIANAYAGAM NJ, SUNDE M, MATTHEWS JM. The power of two:protein dimerization in biology[J]. Trends in Biochemical Sciences, 2004, 29(11):618-625.
    [96] KWOK C, ZEISIG BB, DONG S, SO CWE, Forced homo-oligomerization of RARα leads to transformation of primary hematopoietic cells[J]. Cancer Cell, 2006, 9(2):95-108.
    [97] LIN RJ, NAGY L, INOUE S, SHAO W, MILLER WH, EVANS RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia[J]. Nature, 1998, 391(6669):811-814.
    [98] ZHAO MW, GE Y, XU ZY, OUYANG X, JIA YL, LIU JT, ZHANG MX, AN YY. A BTB/POZ domain-containing protein negatively regulates plant immunity in Nicotiana benthamiana[J]. Biochemical and Biophysical Research Communications, 2022, 600:54-59.
    [99] BAUER N, ŠKILJAICA A, MALENICA N, RAZDOROV G, KLASIĆ M, JURANIĆ M, MOČIBOB M, SPRUNCK S, DRESSELHAUS T, LELJAK LEVANIĆ D. The MATH-BTB protein TaMAB2 accumulates in ubiquitin-containing foci and interacts with the translation initiation machinery in Arabidopsis[J]. Front Plant Sci, 2019, 10:1469.
    [100] ŠKILJAICA A. The role of MATH-BTB family proteins TaMAB2 and AtBPM1 in plant development and stress response[D]. Croatia, Zagreb:University of Zagreb, 2022.
    [101] JAGIĆ M, VUK T, ŠKILJAICA A, MARKULIN L, VIČIĆ BOČKOR V, TOKIĆ M, MIŠKEC K, RAZDOROV G, HABAZIN S, ŠOŠTAR M, WEBER I, BAUER N, LELJAK LEVANIĆ D. BPM1 regulates RdDM-mediated DNA methylation via a cullin 3 independent mechanism[J]. Plant Cell Reports, 2022, 41(11):2139-2157.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕彤彤,颜文慧,梁艳,丁寅,颜庆霞,李金华. BTB蛋白泛素化介导植物发育和逆境应答的研究进展[J]. 生物工程学报, 2024, 40(1): 63-80

复制
分享
文章指标
  • 点击次数:252
  • 下载次数: 1650
  • HTML阅读次数: 669
  • 引用次数: 0
历史
  • 收稿日期:2023-03-22
  • 最后修改日期:2023-05-15
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-25
文章二维码
您是第5997902位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司