基于转录组测序分析沉默番茄中RNA结合蛋白基因SlRBP1对其光合作用的影响
作者:
基金项目:

国家自然科学基金(32202558,31972472);中国博士后科学基金(2022M723424)


Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    植物的光合作用直接影响有机物的合成与积累,是农作物产量的直接影响因素。RNA结合蛋白(RNA-binding proteins, RBPs)参与调控植物的多种生理功能,而RBPs在光合作用中的功能尚未被明确阐述。为了探究番茄中一个甘氨酸富集的RNA结合蛋白(glycine-rich RNA-binding proteins, SlRBP1)对植物光合作用的影响,使用人工小RNA干扰的方式通过植物组织培养获得Alisa Craig中稳定遗传的SlRBP1沉默植株,发现番茄果实体积缩小,叶片显著黄化。通过叶绿素含量测定、叶绿素荧光成像及叶绿体透射电镜观察,发现番茄amiR-SlRBP1沉默植株叶片的叶绿体形态结构破坏,叶绿素含量显著降低。对同时期的野生型和amiR-SlRBP1沉默植株测定光合速率,发现amiR-SlRBP1沉默植株的光合速率显著降低。RNA-seq数据分析表明沉默SlRBP1显著降低植株中PsaEPsaLPsbY等光合作用相关基因的表达量,通过光合作用影响番茄果实产量。

    Abstract:

    Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.

    参考文献
    [1] 唐明佳, 徐进, 林锐, 宋珈凝, 喻景权, 周艳虹. 番茄响应光温逆境的生理分子机制研究进展[J]. 园艺学报, 2022, 49(10):2174-2188. TANG MJ, XU J, LIN R, SONG JN, YU JQ, ZHOU YH. Advances in physiological and molecular mechanism of tomato responses to light and temperature stress[J]. Acta Horticulturae Sinica, 2022, 49(10):2174-2188(in Chinese).
    [2] WU A, DOHERTY A, FARQUHAR GD, HAMMER GL. Simulating daily field crop canopy photosynthesis:an integrated software package[J]. Functional Plant Biology, 2017, 45(3):362-377.
    [3] WU A, HAMMER GL, DOHERTY A, CAEMMERER SV, FARQUHAR GD. Quantifying impacts of enhancing photosynthesis on crop yield[J]. Nature Plants, 2019, 5(4):380-388.
    [4] ZHANG Y, KAISER E, ZHANG Y, YANG Q, LI T. Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum)[J]. Physiologia Plantarum, 2019, 167(2):144-158.
    [5] ZHANG Y, KAISER E, MARCELIS LFM, YANG Q, LI T. Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass[J]. Plant, Cell & Environment, 2020, 43(9):2192-2206.
    [6] 代绿叶, 顾益银, 韩莹琰. LED光环境调控对植物影响的研究进展[J]. 分子植物育种:1-22. DAI LY, GU YY, HAN YY. Research progress on the effects of LED light environmental control on plants[J]. Molecular Plant Breeding:1-22(in Chinese).
    [7] FU X, ZHANG J, ZHOU L, MO WM, WANG H, HUANG X. Characterizing the development of photosynthetic capacity in relation to chloroplast structure and mineral nutrition in leaves of three woody fruit species[J]. Tree Physiology, 2022, 42(5):989-1001.
    [8] CZOLPINSKA M, RUREK M. Plant glycine-rich proteins in stress response:an emerging, still prospective story[J]. Frontiers in Plant Science, 2018, 9:302.
    [9] CAO S, JIANG L, SONG S, JING R, XU G. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis[J]. Cellular and Molecular Biology Letters, 2006, 11(4):526-535.
    [10] KIM JY, KIM WY, KWAK KJ, OH SH, HAN YS, KANG H. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process[J]. Journal of Experimental Botany, 2010, 61(9):2317-2325.
    [11] MANGEON A, PARDAL R, MENEZES-SALGUEIRO AD, DUARTE GL, SEIXAS RD, CRUZ FP, CARDEAL V, MAGIOLI C, RICACHENEVSKY FK, MARGIS R, SACHETTO-MARTINS G. AtGRP3 is implicated in root size and aluminum response pathways in Arabidopsis[J]. PLoS One, 2016, 11(3):e0150583.
    [12] KIM DS, KIM NH, HWANG BK. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum)[J]. New Phytologist, 2015, 205(2):786-800.
    [13] WANG B, WANG G, SHEN F, ZHU SJ. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit[J]. Frontiers in Plant Science, 2018, 9:540.
    [14] MALQ, YANG YF, WANG YQ, CHENG K, ZHOU XW, LI JY, ZHANG JY, LI R, ZHANG LL, WANG KR, ZENG N, GONG YY, ZHU DM, DENG ZP, QU GQ, ZHU BZ, FU DQ, LUO YB, ZHU HL. SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato[J]. The Plant Cell, 2022, 34(7):2747-2764.
    [15] 张玉琪. 番茄幼苗动态光合特性及其对设施环境因子的响应研究[D]. 北京:中国农业科学院博士学位论文, 2020. ZHANG YQ. Study on dynamic photosynthetic characteristics of tomato seedlings and its response to environmental factors in facilities[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2020(in Chinese).
    [16] MOŻDŻEŃ K, BOJARSKI B, RUT G, MIGDAŁEK G, REPKA P, RZEPKA A. Effect of drought stress induced by mannitol on physiological parameters of maize (Zea Mays L.) seedlings and plants[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 4(special issue 2(Biotechnology)):86-91.
    [17] BANTIS F, SMIRNAKOU S, OUZOUNIS T, KOUKOUNARAS A, NTAGKAS N, RADOGLOU K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs)[J]. Scientia Horticulturae, 2018, 235:437-451.
    [18] YANG X, SUN H, HUA M, SONG L, DU P, TOONG Y, MA H, SONG Z. Effects of supplemental light on tomato growth and the mechanism of the photosystem Ⅱ apparatus[J]. PLoS One, 2022, 17(5):e0267989.
    [19] LI Q, LIU Y, TIAN S, LIANG Z, LI S, LI Y, WEI M, ZHANG D. Effect of supplemental lighting on water transport, photosynthetic carbon gain and water use efficiency in greenhouse tomato[J]. Scientia Horticulturae, 2019, 256:108630.
    [20] LU N, MARUO T, JOHKAN M, HOHJO M, TSUKAGOSHI S, ITO Y, ICHIMURA T, SHINOHARA Y. Effects of supplemental lighting within the canopy at different developing stages on tomato yield and quality of single-truss tomato plants grown at high density[J]. Environmental Control in Biology, 2012, 50(1):1-11.
    [21] LI J, HAMAOKA N, MAKINO F, KAWAMOTO A, LIN Y, RÖGNER M, NOWACZYK MM, LEE YH, NAMBA K, GERLE C, KURISU G. Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97Å resolution[J]. Communications Biology, 2022, 5(1):951.
    [22] CHEN M, PEREZ-BOEREMA A, ZHANG L, LI Y, YANG M, LI S, AMUNTS A. Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly[J]. Nature Plants, 2020, 6(3):314-320.
    [23] KRIEGER-LISZKAY A, SHIMAKAWA G, SÉTIF P. Role of the two PsaE isoforms on O2 reduction at photosystem I in Arabidopsis thaliana[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020, 1861(1):148089.
    [24] ROOSE J L, FRANKEL L K, MUMMADISETTI MP, BRICKER TM. The extrinsic proteins of photosystem Ⅱ:update[J]. Planta, 2016, 243:889-908.
    [25] HADDY A, LEE I, SHIN K, TAI H. Characterization of fluoride inhibition in photosystem Ⅱ lacking extrinsic PsbP and PsbQ subunits[J]. Journal of Photochemistry and Photobiology B:Biology, 2018, 185:1-9.
    [26] von SYDOW L, SCHWENKERT S, MEURER J, FUNK C, MAMEDOV F, SCHRÖDER WP. The PsbY protein of Arabidopsis photosystem Ⅱ is important for the redox control of cytochrome b559[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(9):1524-1533.
    [27] 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1):90-102. XIONG XW, WANG YQ, TIAN HZ, ZHANG SQ, GENG GD. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1):90-102(in Chinese).
    [28] HE F, SHI YJ, CHEN Q, LI JL, NIU MX, FENG CH, LU M, TIAN F, ZHANG F, LIN TX, CHEN LC, LIU QL, WAN X. Genome-wide investigation of the PtrCHLP family reveals that PtrCHLP3 actively mediates poplar growth and development by regulating photosynthesis[J]. Frontiers in Plant Science, 2022, 13:870970.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周晞雯,马力群,朱鸿亮. 基于转录组测序分析沉默番茄中RNA结合蛋白基因SlRBP1对其光合作用的影响[J]. 生物工程学报, 2024, 40(1): 150-162

复制
分享
文章指标
  • 点击次数:259
  • 下载次数: 915
  • HTML阅读次数: 498
  • 引用次数: 0
历史
  • 收稿日期:2023-05-22
  • 最后修改日期:2023-07-11
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-25
文章二维码
您是第6020665位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司