冠状病毒非结构蛋白13的研究进展
作者:
基金项目:

国家自然科学基金(32160827);江西现代农业科研协同创新项目(JXXTCXBSJJ202209)


Advances in the coronavirus nonstructural protein 13
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    冠状病毒能够引发多种传染性疾病,给动物和人类的健康带来严重危害。研发有效的疫苗和抗病毒药物成为防治疾病的重要手段。冠状病毒基因组能够编码多种蛋白质,包括结构蛋白、非结构蛋白和辅助蛋白。解旋酶非结构蛋白13 (nonstructural protein 13, NSP13)是冠状病毒编码的一种关键非结构蛋白,能够调控病毒复制和宿主先天免疫反应。因此,NSP13被认为是研发抗冠状病毒药物的重要靶点。本文结合国内外现有NSP13相关研究成果,对冠状病毒解旋酶NSP13的来源与结构、序列保守性、解旋机制、酶抑制剂、蛋白互作以及免疫调控等方面进行综述,并且分析了NSP13研究目前面临的问题,为研发靶向NSP13的广谱抗冠状病毒药物提供了理论依据。

    Abstract:

    Coronaviruses pose significant threats to animal and human health, leading to the development of various infectious diseases. It is critical to develop effective vaccines and antiviral medicines to prevent and treat these diseases. The coronavirus genome encodes several types of proteins, including structural, nonstructural, and accessory proteins. Among them, nonstructural protein 13 (NSP13) helicase plays a crucial role in regulating viral replication and the innate immune response of the host. Therefore, it serves as a vital target for the development of anti-coronavirus drugs. This paper presents a comprehensive review of NSP13 research, covering its source, structure, sequence conservation, unwinding mechanism, enzyme inhibitors, protein interaction, and immune regulation. Additionally, the paper analyzes the current challenges in NSP13 research and aims to provide a theoretical foundation for the development of broad-spectrum antiviral drugs targeting NSP13.

    参考文献
    [1] CUI J, LI F, SHI ZL. Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17(3):181-192.
    [2] WU AP, PENG YS, HUANG BY, DING X, WANG XY, NIU PH, MENG J, ZHU ZZ, ZHANG Z, WANG JY, SHENG J, QUAN LJ, XIA ZX, TAN WJ, CHENG GH, JIANG TJ. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China[J]. Cell Host & Microbe, 2020, 27(3):325-328.
    [3] ZHOU P, YANG XL, WANG XG, HU B, ZHANG L, ZHANG W, SI HR, ZHU Y, LI B, HUANG CL, CHEN HD, CHEN J, LUO Y, GUO H, JIANG RD, LIU MQ, CHEN Y, SHEN XR, WANG X, ZHENG XS, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273.
    [4] 陈嘉源, 施劲松, 丘栋安, 刘畅, 李鑫, 赵强, 阮吉寿, 高山. 2019新型冠状病毒基因组的生物信息学分析[J]. 生物信息学, 2020, 18(2):96-102. CHEN JY, SHI JS, QIU DA, LIU C, LI X, ZHAO Q, RUAN JS, GAO S. Bioinformatics analysis of the 2019 novel coronavirus genome[J]. Chinese Journal of Bioinformatics, 2020, 18(2):96-102(in Chinese).
    [5] FEHR AR, CHANNAPPANAVAR R, PERLAMN S. Middle east respiratory syndrome:emergence of a pathogenic human coronavirus[J]. Annual Review of Medicine, 2017, 68:387-399.
    [6] WU F, ZHAO S, YU B, CHEN YM, WANG W, SONG ZG, HU Y, TAO ZW, TIAN JH, PEI YY, YUAN ML, ZHANG YL, DAI FH, LIU Y, WANG QM, ZHENG JJ, XU L, HOLMES EC, ZHANG YZ. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798):265-269.
    [7] LU RJ, ZHAO X, LI J, NIU PH, YANG B, WU HL, WANG WL, SONG H, HUANG BY, ZHU N, BI YH, MA XJ, ZHAN FX, WANG L, HU T, ZHOU H, HU ZH, ZHOU WM, ZHAO L, CHEN J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574.
    [8] CHEN Y, LIU QY, GUO DY. Emerging coronaviruses:genome structure, replication, and pathogenesis[J]. Journal of Medical Virology, 2020, 92(4):418-423.
    [9] LEDNICKY JA, TAGLIAMONTE MS, WHITE SK, ELBADRY MA, ALAM MM, STEPHENSON CJ, BONNY TS, LOEB JC, TELISMA T, CHAVANNES S, OSTROV DA, MAVIAN C, de ROCHARS VMB, SALEMI M, MORRIS JG. Independent infections of porcine deltacoronavirus among Haitian children[J]. Nature, 2021, 600(7887):133-137.
    [10] ZHANG XY, GUO J, WAN X, ZHOU JG, JIN W, LU J, WANG WH, YANG AN, LIU D, SHÍ Z, YUAN ZM, LI XG, MENG SL, DUAN K, WANG ZJ, YANG XM, SHEN S. Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate[J]. Emerging Microbes & Infections, 2020, 9:2653-2662.
    [11] ENJUANES L, DEDIEGO ML, ALVAREZ E, DEMING D, SHEAHAN T, BARIC R. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease[J]. Virus Research, 2008, 133(1):45-62.
    [12] PUTICS Á, GORBALENYA AE, ZIEBUHR J. Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3[J]. Journal of General Virology, 2006, 87(3):651-656.
    [13] PRENTICE E, McAULIFFE J, LU XT, SUBBARAO K, DENISON MR. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins[J]. Journal of Virology, 2004, 78(18):9977-9986.
    [14] LÜKING A, STAHL U, SCHMIDT U. The protein family of RNA helicases[J]. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33(4):259-296.
    [15] LINDER P, TANNER NK, BANROQUES J. From RNA helicases to RNPases[J]. Trends in Biochemical Sciences, 2001, 26(6):339-341.
    [16] ABDELHALEEM M. RNA helicases:regulators of differentiation[J]. Clinical Biochemistry, 2005, 38(6):499-503.
    [17] SINGLETON MR, DILLINGHAM MS, WIGLEY DB. Structure and mechanism of helicases and nucleic acid translocases[J]. Annual Review of Biochemistry, 2007, 76:23-50.
    [18] GORBALENYA AE, KOONIN EV. Helicases:amino acid sequence comparisons and structure-function relationships[J]. Current Opinion in Structural Biology, 1993, 3(3):419-429.
    [19] FAIRMAN-WILLIAMS ME, GUENTHER UP, JANKOWSKY E. SF1 and SF2 helicases:family matters[J]. Current Opinion in Structural Biology, 2010, 20(3):313-324.
    [20] ADEDEJI AO, MARCHAND B, TE VELTHUIS AJW, SNIJDER EJ, WEISS S, EOFF RL, SINGH K, SARAFIANOS SG. Mechanism of nucleic acid unwinding by SARS-CoV helicase[J]. PLoS One, 2012, 7(5):e36521.
    [21] SHU T, HUANG MH, WU D, REN YJ, ZHANG XY, HAN Y, MU JF, WANG RB, QIU Y, ZHANG DY, ZHOU X. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts[J]. Virologica Sinica, 2020, 35(3):321-329.
    [22] HARTENIAN E, NANDAKUMAR D, LARI A, LY M, TUCKER JM, GLAUNSINGER BA. The molecular virology of coronaviruses[J]. The Journal of Biological Chemistry, 2020, 295(37):12910-12934.
    [23] KIM D, LEE JY, YANG JS, KIM JW, KIM VN, CHANG H. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4):914-921.e10.
    [24] GORBALENYA AE, ENJUANES L, ZIEBUHR J, SNIJDER EJ. Nidovirales:evolving the largest RNA virus genome[J]. Virus Research, 2006, 117(1):17-37.
    [25] FREITAS BT,DURIE IA,MURRAY J,LONGO JE, MILLER HC, CRICH D, HOGAN RJ, TRIPP RA, PEGAN SD. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease[J]. ACS Infectious Diseases, 2020, 6(8):2099-2109.
    [26] ADEDEJI AO, LAZARUS H. Biochemical characterization of middle east respiratory syndrome coronavirus helicase[J]. mSphere, 2016, 1(5):e00235-e00216.
    [27] FRICK DN, VIRDI RS, VUKSANOVIC N, DAHAL N, SILVAGGI NR. Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 nsp3[J]. Biochemistry, 2020, 59(28):2608-2615.
    [28] JIA ZH, YAN LM, REN ZL, WU LJ, WANG J, GUO J, ZHENG LT, MING ZH, ZHANG LQ, LOU ZY, RAO ZH. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis[J]. Nucleic Acids Research, 2019, 47(12):6538-6550.
    [29] HAO W, WOJDYLA JA, ZHAO R, HAN RY, DAS R, ZLATEV I, MANOHARAN M, WANG MT, CUI S. Crystal structure of Middle East respiratory syndrome coronavirus helicase[J]. PLoS Pathogens, 2017, 13(6):e1006474.
    [30] NEWMAN JA, DOUANGAMATH A, YADZANI S, YOSAATMADJA Y, AIMON A, BRANDÃO-NETO J, DUNNETT L, GORRIE-STONE T, SKYNER R, FEARON D, SCHAPIRA M, von DELFT F, GILEADI O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase[J]. Nature Communications, 2021, 12(1):4848.
    [31] WU CC, SHAN YK, WANG SY, LIU F. Dynamically probing ATP-dependent RNA helicase A-assisted RNA structure conversion using single molecule fluorescence resonance energy transfer[J]. Protein Science, 2021, 30(6):1157-1168.
    [32] YAZDI AK, PAKARIAN P, PERVEEN S, HAJIAN T, SANTHAKUMAR V, BOLOTOKOVA A, LI FL, VEDADI M. Kinetic characterization of SARS-CoV-2 NSP13 ATPase activity and discovery of small-molecule inhibitors[J]. ACS Infectious Diseases, 2022, 8(8):1533-1542.
    [33] IVANOV KA, THIEL V, DOBBE JC, van der MEER Y, SNIJDER EJ, ZIEBUHR J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase[J]. Journal of Virology, 2004, 78(11):5619-5632.
    [34] SOMMERS JA, LOFTUS LN, JONES MP, LEE RA, HAREN CE, DUMM AJ, BROSH RM JR. Biochemical analysis of SARS-CoV-2 NSP13 helicase implicated in COVID-19 and factors that regulate its catalytic functions[J]. The Journal of Biological Chemistry, 2023, 299(3):102980.
    [35] LEE NR, KWON HM, PARK K, OH S, JEONG YJ, KIM DE. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase NSP13[J]. Nucleic Acids Research, 2010, 38(21):7626-7636.
    [36] REN J, DING Z, FANG P, XIAO S, FANG L. ATPase and helicase activities of porcine epidemic diarrhea virus NSP13[J]. Veterinary Microbiology, 2021, 257:109074.
    [37] CHEN J, MALONE B, LLEWELLYN E, GRASSO M, SHELTON PMM, DOMINIC B OLINARES P, MARUTHI K, ENG ET, VATANDASLAR H, CHAIT BT, KAPOOR TM, DARST SA, CAMPBELL EA. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex[J]. Cell, 2020, 182(6):1560-1573.e13.
    [38] FANG S, CHEN B, TAY F PL, NG BS, LIU DX. An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells[J]. Virology, 2007, 358(1):136-147.
    [39] FUNG SY, SIU KL, LIN H, CHAN CP, YEUNG ML, JIN DY. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1[J]. Cell and Bioscience, 2022, 12(1):36.
    [40] YUE K, YAO B, SHI YC, YANG Y, QIAN Z, CI Y, SHI L. The stalk domain of SARS-CoV-2 NSP13 is essential for its helicase activity[J]. Biochemical and Biophysical Research Communications, 2022, 601:129-136.
    [41] WHITE MA, LIN W, CHENG X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase[J]. Journal of Physical Chemistry Letters, 2020, 11:9144-9151.
    [42] ROMEO I, ALESSANDRA AMBROSIO F, COSTA G, CORONA A, ALKHATIB M, SALPINI R, LEMME S, VERGNI D, SVICHER V, SANTORO MM, TRAMONTANO E, CECCHERINI-SILBERSTEIN F, ARTESE A, ALCARO S. Targeting SARS-CoV-2 nsp13 helicase and assessment of druggability pockets:identification of two potent inhibitors by a multi-site in silico drug repurposing approach[J]. Molecules, 2022, 27(21):7522.
    [43] VARDHAN S, SAHOO SK. Exploring the therapeutic nature of limonoids and triterpenoids against SARS-CoV-2 by targeting nsp13, nsp14, and nsp15 through molecular docking and dynamics simulations[J]. Journal of Traditional and Complementary Medicine, 2022, 12(1):44-54.
    [44] WANG PC, WANG XW, LIU X, SUN M, LIANG X, BAI J, JIANG P. Natural compound ZINC12899676 reduces porcine epidemic diarrhea virus replication by inhibiting the viral NTPase activity[J]. Frontiers in Pharmacology, 2022, 13:879733.
    [45] YU MS, LEE J, LEE JM, KIM Y, CHIN YW, JEE JG, KEUM YS, JEONG YJ. Identification of myric etin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsp13[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(12):4049-4054.
    [46] KEUM YS, LEE JM, YU MS, CHIN YW, JEONG YJ. Inhibition of SARS coronavirus helicase by baicalein[J]. Bulletin of the Korean Chemical Society, 2013, 34(11):3187-3188.
    [47] CORONA A, WYCISK K, TALARICO C, MANELFI C, MILIA J, CANNALIRE R, ESPOSITO F, GRIBBON P, ZALIANI A, IACONIS D, BECCARI AR, SUMMA V, NOWOTNY M, TRAMONTANO E. Natural compounds inhibit SARS-CoV-2 nsp13 unwinding and ATPase enzyme activities[J]. ACS Pharmacology & Translational Science, 2022, 5(4):226-239.
    [48] UGUREL OM, MUTLU O, SARIYER E, KOCER S, UGUREL E, INCI TG, ATA O, TURGUT-BALIK D. Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13)[J]. International Journal of Biological Macromolecules, 2020, 163:1687-1696.
    [49] ADEDEJI AO, SINGH K, CALCATERRA NE, DeDIEGO ML, ENJUANES L, WEISS S, SARAFIANOS SG. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(9):4718-4728.
    [50] ADEDEJI AO, SINGH K, KASSIM A, COLEMAN CM, ELLIOTT R, WEISS SR, FRIEMAN MB, SARAFIANOS SG. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and middle east respiratory syndrome coronaviruses[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(8):4894-4898.
    [51] YUAN SF, WANG RM, CHAN JFW, ZHANG AJ, CHENG TF, CHIK KKH, YE ZW, WANG SY, LEE ACY, JIN LJ, LI HY, JIN DY, YUEN KY, SUN HZ. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters[J]. Nature Microbiology, 2020, 5(11):1439-1448.
    [52] YUAN SF, YIN X, MENG XZ, CHAN JFW, YE ZW, RIVA L, PACHE L, CHAN CCY, LAI PM, CHAN CCS, POON VKM, LEE ACY, MATSUNAGA N, PU Y, YUEN CK, CAO JL, LIANG RH, TANG KM, SHENG L, DU YS, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2[J]. Nature, 2021, 593(7859):418-423.
    [53] HE Y, YI X, ZHANG ZH, LUO HS, LI R, FENG X, FANG ZM, ZHU XH, CHENG WL, JIANG DS, ZHAO F, WEI X. JIB-04, a histone demethylase Jumonji C domain inhibitor, regulates phenotypic switching of vascular smooth muscle cells[J]. Clinical Epigenetics, 2022, 14(1):101.
    [54] 姚晨, 郭萌, 胡慧, 史晨曦, 杨国宇. 苯基吡啶酮衍生物影响猪δ冠状病毒复制的作用分析[J]. 畜牧兽医学报, 2022, 53(9):3190-3198. YAO C, GUO M, HU H, SHI CX, YANG GY. Effects of phenylpyridinone derivative on the replication of porcine deltacoronavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3190-3198(in Chinese).
    [55] SON J, HUANG SM, ZENG QR, BRICKER TL, CASE JB, ZHOU JZ, ZANG RC, LIU ZM, CHANG XJ, DARLING TL, XU J, HARASTANI HH, CHEN L, GOMEZ CASTRO MF, ZHAO YX, KOHIO HP, HOU GP, FAN BC, NIU BB, GUO RL, et al. JIB-04 has broad-spectrum antiviral activity and inhibits SARS-CoV replication and coronavirus pathogenesis[J]. mBio, 2022, 13(1):e0337721.
    [56] TANG RF, GUO LJ, FAN QJ, ZHANG LY, WANG YM, ZHANG X, SHI D, WU Y, SHI HY, LIU JB, CHEN JF, FENG L. Porcine deltacoronavirus infection is inhibited by griffithsin in cell culture[J]. Veterinary Microbiology, 2022, 264:109299.
    [57] CHAN JFW, KOK KH, ZHU Z, CHU H, TO KKW, YUAN SF, YUEN KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerging Microbes & Infections, 2020, 9(1):221-236.
    [58] SUBISSI L, IMBERT I, FERRON F, COLLET A, COUTARD B, DECROLY E, CANARD B. SARS-CoV ORF1b-encoded nonstructural proteins 12−16:replicative enzymes as antiviral targets[J]. Antiviral Research, 2014, 101:122-130.
    [59] MALONE B, URAKOVA N, SNIJDER EJ, CAMPBELL EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design[J]. Nature Reviews Molecular Cell Biology, 2022, 23(1):21-39.
    [60] MOUSTAQIL M, OLLIVIER E, CHIU HP, van TOL S, RUDOLFFI-SOTO P, STEVENS C, BHUMKAR A, HUNTER DJB, FREIBERG AN, JACQUES D, LEE B, SIERECKI E, GAMBIN Y. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1):implications for disease presentation across species[J]. Emerging Microbes & Infections, 2021, 10(1):178-195.
    [61] SHIN D, MUKHERJEE R, GREWE D, BOJKOVA D, BAEK K, BHATTACHARYA A, SCHULZ L, WIDERA M, MEHDIPOUR AR, TASCHER G, GEURINK PP, WILHELM A, van der HEDEN van NOORT GJ, OVAA H, MüLLER S, KNOBELOCH KP, RAIALINGAM K, SCHULMAN BA, CINATL J, HUMMER G, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity[J]. Nature, 2020, 587(7835):657-662.
    [62] LI AX, ZHANG B, ZHAO KT, YIN ZN, TENG Y, ZHANG L, XU ZC, LIANG KW, CHENG XM, XIA YC. SARS-CoV-2 nsp13 restricts episomal DNA transcription without affecting chromosomal DNA[J]. Journal of Virology, 2023, 97(7):e0051223.
    [63] LEI XB, DONG XJ, MA RY, WANG WJ, XIAO X, TIAN ZQ, WANG CH, WANG Y, LI L, REN LL, GUO F, ZHAO ZD, ZHOU Z, XIANG ZC, WANG JW. Activation and evasion of type I interferon responses by SARS-CoV-2[J]. Nature Communications, 2020, 11(1):3810.
    [64] YUEN CK, LAM JY, WONG WM, MAK LF, WANG X, CHU H, CAI JP, JIN DY, TO KK, CHAN JF, YUEN KY, KOK KH. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists[J]. Emerging Microbes & Infections, 2020, 9(1):1418-1428.
    [65] XIA HJ, CAO ZG, XIE XP, ZHANG XW, CHEN JYC, WANG HL, MENACHERY VD, RAJSBAUM R, SHI PY. Evasion of type I interferon by SARS-CoV-2[J]. Cell Reports, 2020, 33(1):108234.
    [66] VAZQUEZ C, SWANSON SE, NEGATU SG, DITTMAR M, MILLER J, RAMAGE HR, CHERRY S, JURADO KA. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms[J]. PLoS One, 2021, 16(6):e0253089.
    [67] SUI C, XIAO TY, ZHANG SY, ZENG HX, ZHENG Y, LIU BY, XU G, GAO CJ, ZHANG Z. SARS-CoV-2 NSP13 inhibits type I IFN production by degradation of TBK1 via p62-dependent selective autophagy[J]. Journal of Immunology, 2022, 208(3):753-761.
    [68] MINKOFF JM, TENOEVER B. Innate immune evasion strategies of SARS-CoV-2[J]. Nature Reviews Microbiology, 2023, 21(3):178-194.
    [69] SUN H, ZHANG Q, JING YY, ZHANG M, WANG HY, CAI Z, LIUYU TZ, ZHANG ZD, XIONG TC, WU Y, ZHU QY, YAO J, SHU HB, LIN DD, ZHONG B. USP13 negatively regulates antiviral responses by deubiquitinating STING[J]. Nature Communications, 2017, 8:15534.
    [70] BLANCO-MELO D, NILSSON-PAYANT BE, LIU WC, UHL S, HOAGLAND D, MOLLER R, JORDAN TX, OISHI K, PANIS M, SACHS D, WANG TT, SCHWARTZ RE, LIM JK, ALBRECHT RA, TENOEVER BR. Imbalanced host response to SARS-CoV-2 drives development of COVID-19[J]. Cell, 2020, 181(5):1036-1045.e9.
    [71] GUO GJ, GAO M, GAO XC, ZHU BB, HUANG JZ, LUO KT, ZHANG Y, SUN J, DENG M, LOU ZK. SARS-CoV-2 non-structural protein 13(nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):119.
    [72] FANG R, JIANG Q F, ZHOU X, WANG CG, GUAN YK, TAO JL, XI JZ, FENG JM, JIANG ZF. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner[J]. PLoS Pathogens, 2017, 13(11):e1006720.
    [73] HAMMER Q, DUNST J, CHRIST W, PICARAZZI F, WENDORFF M, MOMAYYEZI P, HUHN O, NETSKAR HK, MALEKI KT, GARCÍA M, SEKINE T, SOHLBERG E, AZZIMATO V, AOUADI M, DEGENHARDT F, FRANKE A, SPALLOTTA F, MORI M, MICHAËLSSON J, BJÖRKSTRÖM NK, et al. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells[J]. Cell Reports, 2022, 38(10):110503.
    [74] DURHAM RJ, LATHAM DR, SANABRIA H, JAYARAMAN V. Structural dynamics of glutamate signaling systems by smFRET[J]. Biophysical Journal, 2020, 119(10):1929-1936.
    [75] CAI H, ROCA J, ZHAO YF, WOODSON SA. Dynamic refolding of OxyS sRNA by the Hfq RNA chaperone[J]. Journal of Molecular Biology, 2022, 434(18):167776.
    [76] MARZANO NR, PAUDEL BP, van OIJEN AM, ECROYD H. Real-time single-molecule observation of chaperone-assisted protein folding[J]. Science Advances, 2022, 8(50):eadd0922.
    [77] YU J, IM H, LEE G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+, elucidated by biochemical and single-molecular studies[J]. Biochemical and Biophysical Research Communications, 2023, 668:35-41.
    [78] LUTHULI S, WU SY, CHENG Y, ZHENG XL, WU MJ, TONG HB. Therapeutic effects of fucoidan:a review on recent studies[J]. Marine Drugs, 2019, 17(9):487.
    [79] CHEN BR, LI WM, LI TL, CHAN YL, WU CJ. Fucoidan from Sargassum hemiphyllum inhibits infection and inflammation of Helicobacter pylori[J]. Scientific Reports, 2022, 12(1):429.
    [80] GOU XY, NAWAZ MAH, LIU CY, YANG N, REN J, ZHOU HP, LI YH, ZHU JW, HAN WZ, YU C. Polypeptide induced perylene probe excimer formation and its application in the noncovalent ratiometric detection of matrix metalloproteinase activity[J]. Journal of Materials Chemistry B, 2022, 10(30):5774-5783.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴诚诚,张帆帆,汪娟,李娜,林翠. 冠状病毒非结构蛋白13的研究进展[J]. 生物工程学报, 2024, 40(2): 419-433

复制
分享
文章指标
  • 点击次数:266
  • 下载次数: 1315
  • HTML阅读次数: 526
  • 引用次数: 0
历史
  • 收稿日期:2023-07-04
  • 最后修改日期:2023-10-23
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-02-25
文章二维码
您是第5998212位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司