蛋白质动态平衡网络维稳机制的研究进展
作者:
基金项目:

国家自然科学基金(32360874);甘肃省自然科学基金(23JRRA715);西北民族大学引进人才科研项目(xbmuyjrc202225)


Advances of proteostasis network and its stability maintenance mechanism
Author:
  • GAO Mingyang

    GAO Mingyang

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yuhu

    WU Yuhu

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Xuanye

    YANG Xuanye

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jinqian

    WANG Jinqian

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Xinyan

    HU Xinyan

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Jianhua

    ZHOU Jianhua

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, Gansu, China;Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蛋白质是构成生命体的基础,其在体内有多种存在形式,而这些形式之间如何维持动态平衡对细胞发挥正常功能来说至关重要。诸多因素会影响蛋白质稳态,包括一些内外源性的刺激、翻译过程中出现的问题以及一些调控因子的作用等。当错误折叠的蛋白在细胞中不断积累时,会导致蛋白质稳态失衡并无法发挥正常功能进而引发相关疾病。同时在错误发生后,机体的许多“监控”就会感知这些异常,并通过多种途径来帮助蛋白质维持稳态。本文旨在综述蛋白质动态平衡网络之间错综复杂的关系,以及各种因素在其中发挥的主要作用,并为一些由蛋白合成异常导致疾病的研究等提供新的思路。

    Abstract:

    Protein is fundamental to life, as it generates protein variants. The maintenance of a dynamic equilibrium in these protein variants, known as protein homeostasis, is crucial for cellular function. Various factors, both endogenous and exogenous, can disrupt protein homeostasis during protein synthesis. These factors include translational error, and biological functions mediated by regulatory factors, and more. When cell accumulate proteins with folding errors, it impairs protein homeostasis, leading to the development of related diseases. In response to protein folding errors, multiple monitoring mechanisms are activated to mediate pathways that sustain the dynamic equilibrium. This review highlights the complex relationships within the proteostasis network, which are influenced by a variety of factors. These insights potentially provide new directions for studying diseases caused by protein synthesis errors.

    参考文献
    [1] HIPP MS, KASTURI P, HARTL FU. The proteostasis network and its decline in ageing[J]. Nature Reviews Molecular Cell Biology, 2019, 20(7):421-435.
    [2] FILBECK S, CERULLO F, PFEFFER S, JOAZEIRO CAP. Ribosome-associated quality-control mechanisms from bacteria to humans[J]. Molecular Cell, 2022, 82(8):1451-1466.
    [3] ANFINSEN CB. Principles that govern the folding of protein chains[J]. Science, 1973, 181(4096):223-230.
    [4] DISHMAN AF, VOLKMAN BF. Unfolding the mysteries of protein metamorphosis[J]. ACS Chemical Biology, 2018, 13(6):1438-1446.
    [5] HOUBEN B, ROUSSEAU F, SCHYMKOWITZ J. Protein structure and aggregation:a marriage of necessity ruled by aggregation gatekeepers[J]. Trends in Biochemical Sciences, 2022, 47(3):194-205.
    [6] SUN-WANG JL, IVANOVA S, ZORZANO A. The dialogue between the ubiquitin-proteasome system and autophagy:implications in ageing[J]. Ageing Research Reviews, 2020, 64:101203.
    [7] MERCIER R, la POINTE P. The role of cellular proteostasis in antitumor immunity[J]. Journal of Biological Chemistry, 2022, 298(5):101930.
    [8] JOAZEIRO CAP. Mechanisms and functions of ribosome-associated protein quality control[J]. Nature Reviews Molecular Cell Biology, 2019, 20(6):368-383.
    [9] GAMERDINGER M. Protein quality control at the ribosome:focus on RAC, NAC and RQC[J]. Essays in Biochemistry, 2016, 60(2):203-212.
    [10] MASSON GR. Towards a model of GCN2 activation[J]. Biochemical Society Transactions, 2019, 47(5):1481-1488.
    [11] AUGUSTO L, AMIN PH, WEK RC, SULLIVAN IR WJ. Regulation of arginine transport by GCN2 eIF2 kinase is important for replication of the intracellular parasite Toxoplasma gondii[J]. PLoS Pathog, 2019, 15(6):e1007746.
    [12] YAN LL, ZAHER HS. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes[J]. Molecular Cell, 2021, 81(3):614-628.e4.
    [13] de BAETS G, SCHYMKOWITZ J, ROUSSEAU F. Predicting aggregation-prone sequences in proteins[J]. Essays in Biochemistry, 2014, 56:41-52.
    [14] WU QS, MEDINA SG, KUSHAWAH G, DeVORE ML, CASTELLANO LA, HAND JM, WRIGHT M, BAZZINI AA. Translation affects mRNA stability in a codon-dependent manner in human cells[J]. eLife, 2019, 8:e45396.
    [15] WAUDBY CA, BURRIDGE C, CABRITA LD, CHRISTODOULOU J. Thermodynamics of co-translational folding and ribosome-nascent chain interactions[J]. Current Opinion in Structural Biology, 2022, 74:102357.
    [16] VU QV, JIANG Y, LI MS, O'BRIEN EP. The driving force for co-translational protein folding is weaker in the ribosome vestibule due to greater water ordering[J]. Chemical Science, 2021, 12(35):11851-11857.
    [17] MAUGER DM, CABRAL BJ, PRESNYAK V, SU SV, REID DW, GOODMAN B, LINK K, KHATWANI N, REYNDERS J, MOORE MJ, McFADYEN IJ. mRNA structure regulates protein expression through changes in functional half-life[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(48):24075-24083.
    [18] LYU XL, YANG Q, ZHAO FZ, LIU Y. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed[J]. Nucleic Acids Research, 2021, 49(16):9404-9423.
    [19] 李易聪, 蒲飞洋, 王慧慧, 程燕, 李倬, 马忠仁, 周建华. 同义密码子使用偏嗜性对mRNA半衰期及翻译调控的影响[J]. 生物工程学报, 2022, 38(3):882-892. LI YC, PU FY, WANG HH, CHENG Y, LI Z, MA ZR, ZHOU JH. Effects of synonymous codon usage bias on mRNA half-life and translational regulation[J]. Chinese Journal of Biotechnology, 2022, 38(3):882-892(in Chinese).
    [20] LYU XL, LIU Y. Nonoptimal codon usage is critical for protein structure and function of the master general amino acid control regulator CPC-1[J]. mBio, 2020, 11(5):e02605-e02620.
    [21] GAO MY, YANG XY, WU YH, WANG JQ, HU XY, MA ZR, ZHOU JH. Analysis for codon usage bias in membrane anchor of nonstructural protein 5A from BVDV[J]. Journal of Basic Microbiology, 2023, 63(10):1106-1114.
    [22] GE ZY, LI XR, CAO XA, WANG R, HU W, GEN L, HAN SY, SHANG YJ, LIU YS, ZHOU JH. Viral adaption of staphylococcal phage:a genome-based analysis of the selective preference based on codon usage bias[J]. Genomics, 2020, 112(6):4657-4665.
    [23] MA XX, WANG YN, CAO XA, LI XR, LIU YS, ZHOU JH, CAI XP. The effects of codon usage on the formation of secondary structures of nucleocapsid protein of peste des petits ruminants virus[J]. Genes & Genomics, 2018, 40(9):905-912.
    [24] ZHOU JH, YOU YN, CHEN HT, ZHANG J, MA LN, DING YZ, PEJSAK Z, LIU YS. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-and-mouth disease virus[J]. Infection, Genetics and Evolution, 2013, 16:270-274.
    [25] STEIN KC, MORALES-POLANCO F, van der LIENDEN J, RAINBOLT TK, FRYDMAN J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis[J]. Nature, 2022, 601(7894):637-642.
    [26] CHANEY JL, STEELE A, CARMICHAEL R, RODRIGUEZ A, SPECHT AT, NGO K, LI J, EMRICH S, CLARK PL. Widespread position-specific conservation of synonymous rare codons within coding sequences[J]. PLoS Computational Biology, 2017, 13(5):e1005531.
    [27] ZHAO FZ, ZHOU ZP, DANG YK, NA H, ADAM C, LIPZEN A, NG V, GRIGORIEV Ⅳ, LIU Y. Genome-wide role of codon usage on transcription and identification of potential regulators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6):e2022590118.
    [28] 蒲飞洋, 李易聪, 王慧慧, 冯茜莉, 李倬, 马忠仁, 周建华. 同义密码子使用模式对蛋白产物表达及构象形成的影响[J]. 中国生物工程杂志, 2022, 42(3):91-98. PU FY, LI YC, WANG HH, FENG XL, LI Z, MA ZR, ZHOU JH. Effects of synonymous codon usage patterns on protein product expression and conformation formation[J]. China Biotechnology, 2022, 42(3):91-98(in Chinese).
    [29] KIM YE, HIPP MS, BRACHER A, HAYER-HARTL M, ULRICH HARTL F. Molecular chaperone functions in protein folding and proteostasis[J]. Annual Review of Biochemistry, 2013, 82:323-355.
    [30] HAYER-HARTL M, BRACHER A, HARTL FU. The GroEL-GroES chaperonin machine:a nano-cage for protein folding[J]. Trends in Biochemical Sciences, 2016, 41(1):62-76.
    [31] FREILICH R, ARHAR T, ABRAMS JL, GESTWICKI JE. Protein-protein interactions in the molecular chaperone network[J]. Accounts of Chemical Research, 2018, 51(4):940-949.
    [32] BIN KWON S, RYU K, SON A, JEONG H, LIM KH, KIM KH, SEONG BL, CHOI SI. Conversion of a soluble protein into a potent chaperone in vivo[J]. Scientific Reports, 2019, 9:2735.
    [33] HOUBEN B, MICHIELS E, RAMAKERS M, KONSTANTOULEA K, LOUROS N, VERNIERS J, van der KANT R, de VLEESCHOUWER M, CHICÓRIA N, VANPOUCKE T, GALLARDO R, SCHYMKOWITZ J, ROUSSEAU F. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues[J]. The EMBO Journal, 2020, 39(11):e102864.
    [34] WALSH IM, BOWMAN MA, SOTO SANTARRIAGA IF, RODRIGUEZ A, CLARK PL. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3528-3534.
    [35] SO JS. Roles of endoplasmic reticulum stress in immune responses[J]. Molecules and Cells, 2018, 41(8):705-716.
    [36] di CONZA G, HO PC. ER stress responses:an emerging modulator for innate immunity[J]. Cells, 2020, 9(3):695.
    [37] GHEMRAWI R, KHAIR M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases[J]. International Journal of Molecular Sciences, 2020, 21(17):6127.
    [38] HETZ C, ZHANG KZ, KAUFMAN RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nature Reviews Molecular Cell Biology, 2020, 21(8):421-438.
    [39] HETZ C. The unfolded protein response:controlling cell fate decisions under ER stress and beyond[J]. Nature Reviews Molecular Cell Biology, 2012, 13(2):89-102.
    [40] BAE H, COLLER J. Codon optimality-mediated mRNA degradation:linking translational elongation to mRNA stability[J]. Molecular Cell, 2022, 82(8):1467-1476.
    [41] VECCHI G, SORMANNI P, MANNINI B, VANDELLI A, TARTAGLIA GG, DOBSON CM, HARTL FU, VENDRUSCOLO M. Proteome-wide observation of the phenomenon of life on the edge of solubility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2):1015-1020.
    [42] CIRYAM P, ANTALEK M, CID F, TARTAGLIA GG, DOBSON CM, GUETTSCHES AK, EGGERS B, VORGERD M, MARCUS K, KLEY RA, MORIMOTO RI, VENDRUSCOLO M, WEIHL CC. A metastable subproteome underlies inclusion formation in muscle proteinopathies[J]. Acta Neuropathologica Communications, 2019, 7:197.
    [43] LUALDI M, ALBERIO T, FASANO M. Proteostasis and proteotoxicity in the network medicine era[J]. International Journal of Molecular Sciences, 2020, 21(17):6405.
    [44] CHITI F, DOBSON CM. Protein misfolding, amyloid formation, and human disease:a summary of progress over the last decade[J]. Annual Review of Biochemistry, 2017, 86:27-68.
    [45] LI YJ, XUE YH, XU XJ, WANG GP, LIU YQ, WU H, LI WH, WANG YY, CHEN ZH, ZHANG WL, ZHU YS, JI W, XU T, LIU L, CHEN Q. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity[J]. The EMBO Journal, 2019, 38(3):e98786.
    [46] MORRONE CD, RAGHURAMAN R, YU WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease[J]. Molecular Neurodegeneration, 2023, 18(1):27.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高明阳,吴玉湖,杨宣叶,王进千,胡欣妍,周建华. 蛋白质动态平衡网络维稳机制的研究进展[J]. 生物工程学报, 2024, 40(2): 434-445

复制
分享
文章指标
  • 点击次数:366
  • 下载次数: 1535
  • HTML阅读次数: 651
  • 引用次数: 0
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-11-16
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-02-25
文章二维码
您是第5990983位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司