定点突变优化信号肽对嵌合抗原受体T细胞功能的影响
作者:
基金项目:

湖北省科技厅支持企业创新发展项目(2021BAB126);武汉东湖高新区“揭榜挂帅”项目(2022KJB113)


Effect of signal peptide optimized by site-directed mutagenesis on the function of chimeric antigen receptor T cells
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    信号肽(signal peptide, SP)参与调节嵌合抗原受体(chimeric antigen receptor, CAR)结构的分泌水平及跨膜易位过程,对嵌合抗原受体T细胞(chimeric antigen receptor T cell, CAR-T)行使功能至关重要,本研究通过定点突变技术优化SP序列,并研究其对CD19-CAR-T杀伤功能的影响。首先,利用基因合成和分子克隆技术,构建含野生型SP (SP-wtY)、2种突变型SP (SP-muK或SP-muR)的靶向CD19的CAR载体;对构建成功的载体进行慢病毒包装,并使用慢病毒侵染T细胞,利用流式细胞术检测细胞的转染效率,钙黄绿素释放法检测对靶细胞的体外杀瘤能力,酶联免疫吸附(enzyme linked immunosorbent assay, ELISA)技术检测2种细胞因子[干扰素-γ (interferon-γ, IFN-γ)和干扰素-α (interferon-α, TNF-α)]的分泌水平。结果显示,构建了野生型和信号肽突变的重组慢病毒质粒,慢病毒转导T细胞后,携带3种信号肽(SP-wtY、SP-muK或SP-muR)的CD19-CAR转染效率分别为33.9%、35.5%、36.8%。进一步杀伤实验显示,与SP-muK和SP-wtY细胞相比,SP-muR细胞的肿瘤杀伤效果显著提高,当效靶比为10:1时共培养24 h后,SP-muR组CAR-T细胞的细胞因子IFN-γ和TNF-α分泌水平显著高于SP-muK和SP-wtY组。本研究揭示信号肽N端正电荷数的增加可以提高CAR的表达效率和对CD19+靶细胞的杀伤作用,为CAR结构的优化改造和临床高效应用提供了科学依据。

    Abstract:

    Signal peptides (SP) are involved in regulating the secretion level and transmembrane translocation of chimeric antigen receptors (CAR), which is crucial for CAR-T cells. This study aimed to optimize the SP sequence by site-directed mutagenesis and investigate its impact on the killing function of CD19-CAR-T. Firstly, CAR vectors targeting CD19 containing wild-type SP (SP-wtY) or two mutant SP (SP-muK or SP-muR) were constructed using gene synthesis and molecular cloning techniques. The successfully constructed vector was packaged with lentivirus, and T cells were infected. The transfection efficiency of T cells was detected by flow cytometry, while the killing effect on target cells was assessed using the calcein release method. The secretion levels of cytokines interferon-γ (IFN-γ) and interferon-α (TNF-α) were measured using enzyme linked immunosorbent assay (ELISA). The results showed that successful construction of recombinant lentivirus plasmids with wild type and signal peptide mutation. After the transferring the lentivirus into T cells, the transfection efficiency of CD19-CAR carrying three signal peptides (SP-wtY, SP-muK, or SP-muR) were 33.9%, 35.5%, and 36.8%, respectively. Further killing assay showed that the tumor-killing effect of SP-muR cells was significantly higher than that of SP-muK and SP-wtY cells. When the ratio of effector to target was 10:1, the secretion levels of cytokines IFN-γ and TNF-α of CAR-T cells of the SP-muR group were significantly higher than those in SP-muK and SP-wtY groups. In summary, this study revealed that increasing the N-terminal positive charge of the signal peptide can improve the expression efficiency of CAR and promote the killing of CD19+ target cells. These findings provide a scientific basis the optimization and clinical application of CAR structure.

    参考文献
    [1] JOHNSON LA, JUNE CH. Driving gene-engineered T cell immunotherapy of cancer[J]. Cell Research, 2017, 27(1):38-58.
    [2] JUNE CH, SADELAIN M. Chimeric antigen receptor therapy[J]. New England Journal of Medicine, 2018, 379(1):64-73.
    [3] BRUDNO JN, KOCHENDERFER JN. Recent advances in CAR T-cell toxicity:mechanisms, manifestations and management[J]. Blood Reviews, 2019, 34:45-55.
    [4] DEPIL S, DUCHATEAU P, GRUPP SA, MUFTI G, POIROT L. 'Off-the-shelf' allogeneic CAR T cells:development and challenges[J]. Nature Reviews Drug Discovery, 2020, 19(3):185-199.
    [5] GUMBER D, WANG LD. Improving CAR-T immunotherapy:overcoming the challenges of T cell exhaustion[J]. eBioMedicine, 2022, 77:103941.
    [6] ARMENTEROS JJA, TSIRIGOS KD, SØNDERBY CK, PETERSEN TN, WINTHER O, BRUNAK S, von HEIJNE G, NIELSEN H. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37(4):420-423.
    [7] HUANG Q, PALMER T. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase[J]. mBio, 2017, 8(4):e00909-00917.
    [8] DANIEL W, LEE, MD. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults:a phase 1 dose- escalation trial[J]. The Lancet, 2015, 385(9967):517-528.
    [9] MAUDE SL, LAETSCH TW, BUECHNER J, RIVES S, BOYER M, BITTENCOURT H, BADER P, VERNERIS MR, STEFANSKI HE, MYERS GD, QAYED M, de MOERLOOSE B, HIRAMATSU H, SCHLIS K, DAVIS KL, MARTIN PL, NEMECEK ER, YANIK GA, PETERS C, BARUCHEL A, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. New England Journal of Medicine, 2018, 378(5):439-448.
    [10] PARK JH, RIVIÈRE I, GONEN M, WANG XY, SÉNÉCHAL B, CURRAN KJ, SAUTER C, WANG YZ, SANTOMASSO B, MEAD E, ROSHAL M, MASLAK P, DAVILA M, BRENTJENS RJ, SADELAIN M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia[J]. The New England Journal of Medicine, 2018, 378(5):449-459.
    [11] TURTLE CJ, HAY KA, HANAFI LA, LI D, CHERIAN S, CHEN XY, WOOD B, LOZANSKI A, BYRD JC, HEIMFELD S, RIDDELL SR, MALONEY DG. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2017, 35(26):3010-3020.
    [12] PORTER DL, LEVINE BL, KALOS M, BAGG A, JUNE CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia[J]. The New England Journal of Medicine, 2011, 365(8):725-733.
    [13] KOCHENDERFER JN, DUDLEY ME, FELDMAN SA, WILSON WH, SPANER DE, MARIC I, STETLER-STEVENSON M, PHAN GQ, HUGHES MS, SHERRY RM, YANG JC, KAMMULA US, DEVILLIER L, CARPENTER R, NATHAN DA N, MORGAN RA, LAURENCOT C, ROSENBERG SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells[J]. Blood, 2012, 119(12):2709-2720.
    [14] KOCHENDERFER JN, DUDLEY ME, KASSIM SH, SOMERVILLE RPT, CARPENTER RO, STETLER-STEVENSON M, YANG JC, PHAN GQ, HUGHES MS, SHERRY RM, RAFFELD M, FELDMAN S, LU L, LI YF, NGO LT, GOY A, FELDMAN T, SPANER DE, WANG ML, CHEN CC, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2015, 33(6):540-549.
    [15] 李帆, 张琴星, 童祥文, 田高辉, 顾力行, 徐瑶. 不同信号肽对嵌合抗原受体T细胞杀伤作用的影响研究[J]. 中国癌症杂志, 2022, 32(2):142-151. LI F, ZHANG QX, TONG XW, TIAN GH, GU LX, XU Y. A study on influence of different signal peptides on anti-tumor effect of chimeric antigen receptor (CAR) T cells[J]. China Oncology, 2022, 32(2):142-151(in Chinese).
    [16] GOLUBOVSKAYA V. CAR-T cells targeting immune checkpoint pathway players[J]. Frontiers in Bioscience-Landmark, 2022, 27(4):121.
    [17] ROGOSIC S, GHORASHIAN S. CAR-T cell therapy in paediatric acute lymphoblastic leukaemia-past, present and future[J]. British Journal of Haematology, 2020, 191(4):617-626.
    [18] LIN WY, WANG HH, CHEN YW, LIN CF, FAN HC, LEE YY. Gene modified CAR-T cellular therapy for hematologic malignancies[J]. International Journal of Molecular Sciences, 2020, 21(22):8655.
    [19] HONG MH, CLUBB JD, CHEN YY. Engineering CAR-T cells for next-generation cancer therapy[J]. Cancer Cell, 2020, 38(4):473-488.
    [20] STERNER RC, STERNER RM. CAR-T cell therapy:current limitations and potential strategies[J]. Blood Cancer Journal, 2021, 11(4):69.
    [21] JANDA CY, LI J, OUBRIDGE C, HERNÁNDEZ H, ROBINSON CV, NAGAI K. Recognition of a signal peptide by the signal recognition particle[J]. Nature, 2010, 465(7297):507-510.
    [22] SARAOGI I, SHAN SO. Molecular mechanism of co-translational protein targeting by the signal recognition particle[J]. Traffic (Copenhagen, Denmark), 2011, 12(5):535-542.
    [23] SADELAIN M, BRENTJENS R, RIVIÈRE I. The basic principles of chimeric antigen receptor design[J]. Cancer Discovery, 2013, 3(4):388-398.
    [24] MAUS MV, JUNE CH. Making better chimeric antigen receptors for adoptive T-cell therapy[J]. Clinical Cancer Research, 2016, 22(8):1875-1884.
    [25] WANG CM, WU ZQ, WANG Y, GUO YL, DAI HR, WANG XH, LI X, ZHANG YJ, ZHANG WY, CHEN MX, ZHANG Y, FENG KC, LIU Y, LI SX, YANG QM, HAN WD. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma:an open-label phase I trial[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2017, 23(5):1156-1166.
    [26] RAMOS CA, BALLARD B, ZHANG HM, DAKHOVA O, GEE AP, MEI ZY, BILGI M, WU MF, LIU H, GRILLEY B, BOLLARD CM, CHANG BH, ROONEY CM, BRENNER MK, HESLOP HE, DOTTI G, SAVOLDO B. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes[J]. The Journal of Clinical Investigation, 2017, 127(9):3462-3471.
    [27] BROWN CE, ALIZADEH D, STARR R, WENG LH, WAGNER JR, NARANJO A, OSTBERG JR, KILPATRICK J, SIMPSON J, KURIEN A, PRICEMAN SJ, WANG XL, HARSHBARGER TL, D'APUZZO M, RESSLER JA, JENSEN MC, BARISH ME, CHEN MK, PORTNOW J, FORMAN SJ, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy[J]. The New England Journal of Medicine, 2016, 375(26):2561-2569.
    [28] AHMED N, BRAWLEY VS, HEGDE M, ROBERTSON C, GHAZI A, GERKEN C, LIU EL, DAKHOVA O, ASHOORI A, CORDER A, GRAY T, WU MF, LIU H, HICKS J, RAINUSSO N, DOTTI G, MEI ZY, GRILLEY B, GEE A, ROONEY CM, et al. Human epidermal growth factor receptor 2(HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2015, 33(15):1688-1696.
    引证文献
引用本文

刘玉,李帆,戴蕙芸,周润龙,王梦怡,甘世豪,徐瑶. 定点突变优化信号肽对嵌合抗原受体T细胞功能的影响[J]. 生物工程学报, 2024, 40(2): 573-584

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-13
  • 最后修改日期:2023-11-20
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-02-25
文章二维码
您是第6005787位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司