基于酸信号转导系统的细菌耐酸机制及其应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省自然科学基金(LQ23C010004)


Bacterial acid tolerance mechanism based on acid signal transduction system and its applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    酸信号转导系统能够感知酸性环境并转化为信号来调控细菌内的各种耐酸机制,帮助细菌应对酸环境的压力,是耐酸细菌能够在酸性环境下存活的重要原因。本文介绍了在耐酸细菌中发挥重要作用的几种主要的酸信号转导系统:EvgS/EvgA、PhoQ/PhoP、ArsS/ArsR和CadC。从这些系统的结构组成及对耐酸系统的调控角度分析耐酸细菌在酸环境中如何进行信号转导,从而激活相应的耐酸机制,并有效应对酸胁迫。深入认识耐酸系统的调控机制,有助于多种耐酸元件的挖掘、优化设计与构建,能够提高目标菌株在酸性环境中的生长和代谢能力,有助于更好地利用高耐酸工程微生物进行有价值的代谢物的工业生产、酸性环境污染的生物修复,也为抑制耐酸致病菌的生长提供全新靶点。

    Abstract:

    The acid signal transduction system can sense the acidic environment and translate it into signals to regulate various acid tolerance mechanisms within bacteria, helping them to cope with the stress of the acidic environment and survive the acidic environments. This review describes several major acid signal transduction systems that play important roles in acid-tolerant bacteria:EvgS/EvgA, PhoQ/PhoP, ArsS/ArsR, and CadC. The structural components of these systems and their regulation of acid-tolerant systems were used to analyze how acid-tolerant bacteria transduce signal in an acid environment to activate the corresponding acid-tolerance mechanisms and cope with the acid stress. An in-depth understanding of the regulatory mechanisms of acid-tolerant systems can help the mining, optimal design and construction of multiple acid-tolerant parts to improve the growth and metabolism of target strains in acidic environments. It helps to better utilize engineered microorganisms with super acid-resistance for industrial production of valuable metabolites, bioremediation of pollution in acidic environments. Moreover, it also helps to provide novel targets for inhibiting the growth of acid-tolerant pathogenic bacteria.

    参考文献
    相似文献
    引证文献
引用本文

胡彤,李爽,钟卫鸿. 基于酸信号转导系统的细菌耐酸机制及其应用[J]. 生物工程学报, 2024, 40(3): 644-664

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-07
  • 最后修改日期:2023-08-22
  • 录用日期:
  • 在线发布日期: 2024-03-25
  • 出版日期: 2024-03-25
文章二维码
您是第位访问者
生物工程学报 ® 2024 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司