合成微生物群落构建及其在聚羟基脂肪酸酯生物合成中的应用
作者:
基金项目:

广东省海洋经济发展(海洋六大产业)专项资金(粤自然资合[2022]037号);中国博士后科学基金(2022M720280);广东省基础与应用基础研究基金(2022A1515110814)


Construction of synthetic microbial community and its application in polyhydroxyalkanoate biosynthesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [96]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    合成微生物群落是由多种遗传背景清晰的微生物构成的人工系统,具有复杂度低、可控性高、稳定性强等优势,适用于工业生产、人类健康和环境修复等领域。本文在综述合成微生物群落的设计原理和构建方法基础上,特别聚焦其在聚羟基脂肪酸酯(polyhydroxyalkanoate, PHA)生物合成中的应用。作为合成生态学的核心内容、合成生物学的新兴前沿,构建高效、稳定、可控的合成微生物群落需要制定相应策略来调控微生物相互作用、空间结构组装、鲁棒性维持和生物防护。近年来,合成微生物群落已应用于生产药物、生物燃料、生物材料等高价值化学品,其中PHA作为传统塑料的理想替代品受到密切关注。提升并扩大PHA合成菌株的碳源利用能力和范围,降低PHA生产成本,成为合成微生物群落应用于PHA生物合成的研究重点。

    Abstract:

    Synthetic microbial communities are artificial systems composed of multiple microorganisms with well-defined genetic backgrounds. They are characterized by low complexity, high controllability, and strong stability, thus suitable for industrial production, disease management, and environmental remediation. This review summarizes the design principles and construction methods of synthetic microbial communities, and highlights their application in polyhydroxyalkanoate (PHA) biosynthesis. Constructing a synthetic microbial community represents a core research direction of synthetic ecology and an emerging frontier of synthetic biology. It requires strategies to design and control microbial interactions, spatial organization, robustness maintenance, and biocontainment to obtain an efficient, stable, and controllable synthetic microbial community. In recent years, synthetic microbial communities have been widely used to synthesize high-value chemicals such as drugs, biofuels, and biomaterials. As an ideal substitute for oil-based plastics, PHA has received much attention. Enhancing the capacity and broadening the range of carbon source utilization for PHA producers have become the research priority in the application of synthetic microbial communities for PHA biosynthesis, with the aim to reduce PHA production cost.

    参考文献
    [1] DOLINŠEK J, GOLDSCHMIDT F, JOHNSON DR. Synthetic microbial ecology and the dynamic interplay between microbial genotypes[J]. FEMS Microbiology Reviews, 2016, 40(6):961-979.
    [2] GASPAREK M, STEEL H, PAPACHRISTODOULOU A. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia[J]. Biotechnology Advances, 2023, 64:108117.
    [3] CAO ZB, YAN WL, DING MZ, YUAN YJ. Construction of microbial consortia for microbial degradation of complex compounds[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:1051233.
    [4] TSOI R, DAI ZJ, YOU LC. Emerging strategies for engineering microbial communities[J]. Biotechnology Advances, 2019, 37(6):107372.
    [5] VRANCKEN G, GREGORY AC, HUYS GRB, FAUST K, RAES J. Synthetic ecology of the human gut microbiota[J]. Nature Reviews Microbiology, 2019, 17(12):754-763.
    [6] KONOPKA A. What is microbial community ecology?[J]. The ISME Journal, 2009, 3(11):1223-1230.
    [7] ABREU NA, TAGA ME. Decoding molecular interactions in microbial communities[J]. FEMS Microbiology Reviews, 2016, 40(5):648-663.
    [8] MILLER MB, BASSLER BL. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55:165-199.
    [9] MUKHERJEE S, BASSLER BL. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6):371-382.
    [10] DATLA US, MATHER WH, CHEN S, SHOULTZ IW, TÄUBER UC, JONES CN, BUTZIN NC. The spatiotemporal system dynamics of acquired resistance in an engineered microecology[J]. Scientific Reports, 2017, 7:16071.
    [11] BAHRAM M, HILDEBRAND F, FORSLUND SK, ANDERSON JL, SOUDZILOVSKAIA NA, BODEGOM PM, BENGTSSON-PALME J, ANSLAN S, COELHO LP, HAREND H, HUERTA-CEPAS J, MEDEMA MH, MALTZ MR, MUNDRA S, OLSSON PA, PENT M, PÕLME S, SUNAGAWA S, RYBERG M, TEDERSOO L, BORK P. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717):233-237.
    [12] KONG WT, MELDGIN DR, COLLINS JJ, LU T. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8):821-829.
    [13] JIANG W, YANG XY, GU F, LI XM, WANG SM, LUO Y, QI QS, LIANG QF. Construction of synthetic microbial ecosystems and the regulation of population proportion[J]. ACS Synthetic Biology, 2022, 11(2):538-546.
    [14] MOULD DL, HOGAN DA. Intraspecies heterogeneity in microbial interactions[J]. Current Opinion in Microbiology, 2021, 62:14-20.
    [15] PAULI B, AJMERA S, KOST C. Determinants of synergistic cell-cell interactions in bacteria[J]. Biological Chemistry, 2023, 404(5):521-534.
    [16] PROKOPENKO MG, HIRST MB, de BRABANDERE L, LAWRENCE DJP, BERELSON WM, GRANGER J, CHANG BX, DAWSON S, CRANE Ⅲ EJ, CHONG L, THAMDRUP B, TOWNSEND-SMALL A, SIGMAN DM. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia[J]. Nature, 2013, 500(7461):194-198.
    [17] PITTINO F, ZAWIERUCHA K, PONIECKA E, BUDA J, ROSATELLI A, ZORDAN S, AZZONI RS, DIOLAIUTI G, AMBROSINI R, FRANZETTI A. Functional and taxonomic diversity of anaerobes in supraglacial microbial communities[J]. Microbiology Spectrum, 2023, 11(2):e0100422.
    [18] WANG SM, ZHENG GY, ZHOU LX. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species[J]. Water Research, 2010, 44(18):5423-5431.
    [19] LI XX, HUANG S, YU J, WANG QX, WU SX. Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria[J]. International Journal of Hydrogen Energy, 2013, 38(25):10779-10787.
    [20] YURTSEV EA, CHAO HX, DATTA MS, ARTEMOVA T, GORE J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids[J]. Molecular Systems Biology, 2013, 9:683.
    [21] SÁNCHEZ Á, BAJIC D, DÍAZ-COLUNGA J, SKWARA A, VILA JCC, KUEHN S. The community-function landscape of microbial consortia[J]. Cell Systems, 2023, 14(2):122-134.
    [22] DETER HS, LU T. Engineering microbial consortia with rationally designed cellular interactions[J]. Current Opinion in Biotechnology, 2022, 76:102730.
    [23] MEE MT, COLLINS JJ, CHURCH GM, WANG HH. Syntrophic exchange in synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20):E2149-E2156.
    [24] EMBREE M, LIU JK, AL-BASSAM MM, ZENGLER K. Networks of energetic and metabolic interactions define dynamics in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50):15450-15455.
    [25] LIU X, LI XB, JIANG JL, LIU ZN, QIAO B, LI FF, CHENG JS, SUN XC, YUAN YJ, QIAO JJ, ZHAO GR. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides[J]. Metabolic Engineering, 2018, 47:243-253.
    [26] GUILLEN MN, ROSENER B, SAYIN S, MITCHELL A. Assembling stable syntrophic Escherichia coli communities by comprehensively identifying beneficiaries of secreted goods[J]. Cell Systems, 2021, 12(11):1064-1078.
    [27] WANG SJ, TANG HZ, PENG F, YU XJ, SU HJ, XU P, TAN TW. Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium[J]. Communications Biology, 2019, 2:82.
    [28] RUAN ZP, XU MJ, XING YW, JIANG Q, YANG BG, JIANG JD, XU XH. Interspecies metabolic interactions in a synergistic consortium drive efficient degradation of the herbicide bromoxynil octanoate[J]. Journal of Agricultural and Food Chemistry, 2022, 70(37):11613-11622.
    [29] ZHOU K, QIAO KJ, EDGAR S, STEPHANOPOULOS G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4):377-383.
    [30] ZHU YZ, AI MM, JIA XQ. Optimization of a two-species microbial consortium for improved mcl-PHA production from glucose-xylose mixtures[J]. Frontiers in Bioengineering and Biotechnology, 2022, 9:794331.
    [31] BHATT P, BHATT K, SHARMA A, ZHANG WP, MISHRA S, CHEN SH. Biotechnological basis of microbial consortia for the removal of pesticides from the environment[J]. Critical Reviews in Biotechnology, 2021, 41(3):317-338.
    [32] WRIGHT GD. Bacterial resistance to antibiotics:enzymatic degradation and modification[J]. Advanced Drug Delivery Reviews, 2005, 57(10):1451-1470.
    [33] YURTSEV EA, CONWILL A, GORE J. Oscillatory dynamics in a bacterial cross-protection mutualism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22):6236-6241.
    [34] BEN SAID S, TECON R, BORER B, OR D. The engineering of spatially linked microbial consortia-potential and perspectives[J]. Current Opinion in Biotechnology, 2020, 62:137-145.
    [35] VARGHESE VK, PODDAR BJ, SHAH MP, PUROHIT HJ, KHARDENAVIS AA. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals[J]. Science of the Total Environment, 2022, 815:152500.
    [36] DU XF, GU SS, ZHANG Z, LI SZ, ZHOU YQ, ZHANG ZJ, ZHANG Q, WANG LL, JU ZC, YAN CL, LI T, WANG DR, YANG XS, PENG X, DENG Y. Spatial distribution patterns across multiple microbial taxonomic groups[J]. Environmental Research, 2023, 223:115470.
    [37] LIU T, HU SH, YUAN ZG, GUO JH. Microbial stratification affects conversions of nitrogen and methane in biofilms coupling anammox and n-DAMO processes[J]. Environmental Science & Technology, 2023, 57(11):4608-4618.
    [38] LOWERY NV, URSELL T. Structured environments fundamentally alter dynamics and stability of ecological communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):379-388.
    [39] KAPOORE RV, PADMAPERUMA G, MANEEIN S, VAIDYANATHAN S. Co-culturing microbial consortia:approaches for applications in biomanufacturing and bioprocessing[J]. Critical Reviews in Biotechnology, 2022, 42(1):46-72.
    [40] BURMEISTER A, HILGERS F, LANGNER A, WESTERWALBESLOH C, KERKHOFF Y, TENHAEF N, DREPPER T, KOHLHEYER D, von LIERES E, NOACK S, GRÜNBERGER A. A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments[J]. Lab on a Chip, 2019, 19(1):98-110.
    [41] WANG L, ZHANG X, TANG CW, LI PC, ZHU RT, SUN J, ZHANG YF, CUI H, MA JJ, SONG XY, ZHANG WW, GAO X, LUO XZ, YOU LC, CHEN Y, DAI ZJ. Engineering consortia by polymeric microbial swarmbots[J]. Nature Communications, 2022, 13(1):3879.
    [42] JIN XF, RIEDEL-KRUSE IH. Biofilm lithography enables high-resolution cell patterning via optogenetic adhesin expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(14):3698-3703.
    [43] TODA S, BLAUCH LR, TANG SKY, MORSUT L, LIM WA. Programming self-organizing multicellular structures with synthetic cell-cell signaling[J]. Science, 2018, 361(6398):156-162.
    [44] GLASS DS, RIEDEL-KRUSE IH. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular morphologies and patterns[J]. Cell, 2018, 174(3):649-658.
    [45] VENKATRAGHAVAN S, ANANTAKRISHNAN S, RAMAN K. Probing patterning in microbial consortia with a cellular automaton for spatial organisation[J]. Scientific Reports, 2022, 12(1):17159.
    [46] HARCOMBE WR, RIEHL WJ, DUKOVSKI I, GRANGER BR, BETTS A, LANG AH, BONILLA G, KAR A, LEIBY N, MEHTA P, MARX CJ, SEGRÈ D. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics[J]. Cell Reports, 2014, 7(4):1104-1115.
    [47] WU FL, HA YC, WEISS A, WANG MD, LETOURNEAU J, WANG SY, LUO N, HUANG SQ, LEE CT, DAVID LA, YOU LC. Modulation of microbial community dynamics by spatial partitioning[J]. Nature Chemical Biology, 2022, 18(4):394-402.
    [48] LU T, NI CJ. Individual-based modeling of spatial dynamics of chemotactic microbial populations[J]. ACS Synthetic Biology, 2022, 11(11):3714-3723.
    [49] HAYS SG, PATRICK WG, ZIESACK M, OXMAN N, SILVER PA. Better together:engineering and application of microbial symbioses[J]. Current Opinion in Biotechnology, 2015, 36:40-49.
    [50] HERNANDEZ DJ, DAVID AS, MENGES ES, SEARCY CA, AFKHAMI ME. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 2021, 15(6):1722-1734.
    [51] WANG ZK, GONG JS, QIN JF, LI H, LU ZM, SHI JS, XU ZH. Improving the intensity of integrated expression for microbial production[J]. ACS Synthetic Biology, 2021, 10(11):2796-2807.
    [52] STEVENSON C, HALL JPJ, BROCKHURST MA, HARRISON E. Plasmid stability is enhanced by higher-frequency pulses of positive selection[J]. Proceedings of the Royal Society B-Biological Sciences, 2018, 285(1870):20172497.
    [53] LIAO MJ, DIN MO, TSIMRING L, HASTY J. Rock-paper-scissors:engineered population dynamics increase genetic stability[J]. Science, 2019, 365(6457):1045-1049.
    [54] OÑA L, KOST C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks[J]. Ecology Letters, 2022, 25(6):1410-1420.
    [55] LI XL, ZHOU Z, LI WN, YAN YJ, SHEN XL, WANG J, SUN XX, YUAN QP. Design of stable and self-regulated microbial consortia for chemical synthesis[J]. Nature Communications, 2022, 13:1554.
    [56] HARDIN G. The tragedy of the commons[J]. Science, 1968, 162(3859):1243-1248.
    [57] SCARINCI G, SOURJIK V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community[J]. The ISME Journal, 2023, 17(3):371-381.
    [58] MONACO H, LIU KS, SERENO T, DEFORET M, TAYLOR BP, CHEN YY, REAGOR CC, XAVIER JB. Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating[J]. Nature Communications, 2022, 13:721.
    [59] SHAHAB RL, BRETHAUER S, DAVEY MP, SMITH AG, VIGNOLINI S, LUTERBACHER JS, STUDER MH. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose[J]. Science, 2020, 369(6507):eabb1214.
    [60] ZHANG HR, PEREIRA B, LI ZJ, STEPHANOPOULOS G. Engineering Escherichia coli coculture systems for the production of biochemical products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27):8266-8271.
    [61] MUNYAI R, OGOLA HJO, MODISE DM. Microbial community diversity dynamics in acid mine drainage and acid mine drainage-polluted soils:implication on mining water irrigation agricultural sustainability[J]. Frontiers in Sustainable Food Systems, 2021, 5:701870.
    [62] DENG YL, RUAN YJ, MA B, TIMMONS MB, LU HF, XU XY, ZHAO HP, YIN XW. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International, 2019, 132:105085.
    [63] XIE ZX, YAN KQ, KONG LF, GAI YB, JIN T, HE YB, WANG YY, CHEN F, LIN L, LIN ZL, XU HK, SHAO ZZ, LIU SQ, WANG DZ. Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics[J]. Marine Life Science & Technology, 2022, 4(2):277-290.
    [64] DAI CH, WU H, WANG XJ, ZHAO KK, LU ZM. Network and meta-omics reveal the cooperation patterns and mechanisms in an efficient 1,4-dioxane-degrading microbial consortium[J]. Chemosphere, 2022, 301:134723.
    [65] NIETO EE, MACCHI M, VALACCO MP, FESTA S, MORELLI IS, COPPOTELLI BM. Metaproteomic and gene expression analysis of interspecies interactions in a PAH-degrading synthetic microbial consortium constructed with the key microbes of a natural consortium[J]. Biodegradation, 2023, 34(2):181-197.
    [66] MILLER SR, BERGMANN D. Biocontainment design considerations for biopharmaceutical facilities[J]. Journal of Industrial Microbiology, 1993, 11(4):223-234.
    [67] ASIN-GARCIA E, BATIANIS C, LI YS, FAWCETT JD, JONG I, SANTOS VAPM. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida [J]. Microbial Cell Factories, 2022, 21(1):156.
    [68] VANARSDALE E, NAVID A, CHU MJ, HALVORSEN TM, PAYNE GF, JIAO YQ, BENTLEY WE, YUNG MC. Electrogenetic signaling and information propagation for controlling microbial consortia via programmed lysis[J]. Biotechnology and Bioengineering, 2023, 120(5):1366-1381.
    [69] CHAN CTY, LEE JW, CAMERON DE, BASHOR CJ, COLLINS JJ. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment[J]. Nature Chemical Biology, 2016, 12(2):82-86.
    [70] NIH guidelines for research involving recombinant or synthetic nucleic acid molecules (NIH guidelines)[EB/OL].[2023-06-08]. http://oba.od.nih.gov/rdna/nih_guidelines_oba.html.
    [71] WANG Y, LI HC, LIU Y, ZHOU MY, DING MZ, YUAN YJ. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis[J]. Synthetic and Systems Biotechnology, 2022, 7(1):481-489.
    [72] ZHU YX, ZHANG X, YANG WC, LI JF. Enhancement of biomass conservation and bioethanol production of sweet sorghum silage by constructing synergistic microbial consortia[J]. Microbiology Spectrum, 2023, 11(1):e0365922.
    [73] ERGAL İ, GRÄF O, HASIBAR B, STEINER M, VUKOTIĆ S, BOCHMANN G, FUCHS W, RITTMANN SKMR. Biohydrogen production beyond the Thauer limit by precision design of artificial microbial consortia[J]. Communications Biology, 2020, 3:443.
    [74] REDDY CSK, GHAI R, RASHMI, KALIA VC. Polyhydroxyalkanoates:an overview[J]. Bioresource Technology, 2003, 87(2):137-146.
    [75] YOON J, OH MK. Strategies for biosynthesis of C1 gas-derived polyhydroxyalkanoates:a review[J]. Bioresource Technology, 2022, 344(Pt B):126307.
    [76] RIEDEL SL, BADER J, BRIGHAM CJ, BUDDE CF, YUSOF ZAM, RHA C, SINSKEY AJ. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations[J]. Biotechnology and Bioengineering, 2012, 109(1):74-83.
    [77] BHATIA SK, YOON JJ, KIM HJ, HONG JW, HONG YG, SONG HS, MOON YM, JEON JM, KIM YG, YANG YH. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding[J]. Bioresource Technology, 2018, 257:92-101.
    [78] LIU C, QI L, YANG SY, HE Y, JIA XQ. Increased sedimentation of a Pseudomonas-Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates[J]. Chinese Journal of Chemical Engineering, 2019, 27(7):1659-1665.
    [79] RODRIGUES PR, ASSIS DJ, DRUZIAN JI. Simultaneous production of polyhydroxyalkanoate and xanthan gum:from axenic to mixed cultivation[J]. Bioresource Technology, 2019, 283:332-339.
    [80] JIANG YJ, LV Y, WU RF, LU JS, DONG WL, ZHOU J, ZHANG WM, XIN FX, JIANG M. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass[J]. Biotechnology and Bioengineering, 2020, 117(10):2985-2995.
    [81] LI CF, LIN XF, LING X, LI S, FANG H. Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium[J]. Biotechnology for Biofuels, 2021, 14(1):110.
    [82] REBOCHO AT, PEREIRA JR, NEVES LA, ALVES VD, SEVRIN C, GRANDFILS C, FREITAS F, REIS MAM. Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste[J]. Bioengineering, 2020, 7(2):34.
    [83] QIN RL, ZHU YZ, AI MM, JIA XQ. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:1023325.
    [84] LIU YR, YANG SY, JIA XQ. Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(3):343-354.
    [85] SANTOS-MERINO M, GARGANTILLA-BECERRA Á, de la CRUZ F, NOGALES J. Highlighting the potential of Synechococcus elongatus PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling[J]. Frontiers in Microbiology, 2023, 14:1126030.
    [86] USAI G, CORDARA A, RE A, POLLI MF, MANNINO G, BERTEA CM, FINO D, PIRRI CF, MENIN B. Combining metabolite doping and metabolic engineering to improve 2-phenylethanol production by engineered cyanobacteria[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:1005960.
    [87] THARASIRIVAT V, JANTARO S. Increased biomass and polyhydroxybutyrate production by Synechocystis sp. PCC 6803 overexpressing RuBisCO genes[J]. International Journal of Molecular Sciences, 2023, 24(7):6415.
    [88] AFREEN R, TYAGI S, SINGH GP, SINGH M. Challenges and perspectives of polyhydroxyalkanoate production from microalgae/cyanobacteria and bacteria as microbial factories:an assessment of hybrid biological system[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:624885.
    [89] ZHILA NO, SAPOZHNIKOVA KY, KISELEV EG, NEMTSEV IV, LUKYANENKO AV, SHISHATSKAYA EI, VOLOVA TG. Biosynthesis and properties of a P(3HB-co-3HV-co-4HV) produced by Cupriavidus necator B-10646[J]. Polymers, 2022, 14(19):4226.
    [90] TIMM A, STEINBÜCHEL A. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads[J]. Applied and Environmental Microbiology, 1990, 56(11):3360-3367.
    [91] LÖWE H, HOBMEIER K, MOOS M, KREMLING A, PFLÜGER-GRAU K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB [J]. Biotechnology for Biofuels, 2017, 10(1):190.
    [92] WEISS TL, YOUNG EJ, DUCAT DC. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production[J]. Metabolic Engineering, 2017, 44:236-245.
    [93] ZHANG L, CHEN L, DIAO JJ, SONG XY, SHI ML, ZHANG WW. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2[J]. Biotechnology for Biofuels, 2020, 13(1):82.
    [94] DO YS, SMEENK J, BROER KM, KISTING CJ, BROWN R, HEINDEL TJ, BOBIK TA, DiSPIRITO AA. Growth of Rhodospirillum rubrum on synthesis gas:conversion of CO to H2 and poly-β-hydroxyalkanoate[J]. Biotechnology and Bioengineering, 2007, 97(2):279-286.
    [95] HWANG HW, YOON J, MIN K, KIM MS, KIM SJ, CHO DH, SUSILA H, NA JG, OH MK, KIM YH. Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate[J]. Chemical Engineering Journal, 2020, 389:124394.
    [96] CHA S, LIM HG, KWON S, KIM DH, KANG CW, JUNG GY. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals[J]. Metabolic Engineering, 2021, 64:146-153.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白歆奕,张梦君,张广豹,黄艺. 合成微生物群落构建及其在聚羟基脂肪酸酯生物合成中的应用[J]. 生物工程学报, 2024, 40(3): 722-738

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-03
  • 最后修改日期:2023-09-22
  • 在线发布日期: 2024-03-25
  • 出版日期: 2024-03-25
文章二维码
您是第5998179位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司