水稻白叶枯病抗性遗传解析
作者:
基金项目:

浙江省重点研发计划(2021C02056);浙江省大学生科技创新活动计划暨新苗人才计划(2023R404040)


Genetic dissection of rice resistance to bacterial blight
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    水稻白叶枯病是水稻主要的病害之一,对水稻生产具有重要的意义。本研究以国外引进粳稻品种Maybelle与地方籼稻品种白叶秋为亲本构建而成的加倍单倍体(doubled haploid, DH)群体为材料,调查了4个白叶枯病致病小种的致病性。结果表明,各小种的致病性在DH群体间呈现连续分布,并伴有一定的超亲变异。而且,各个致病小种的致病性具有一定的相关性,相关系数处在0.3与0.6之间。数量性状位点(quantitative trait locus, QTL)分析共检测到12个QTL,分别位于水稻第1、2、3、5、6、7、9和12号染色体,贡献率介于4.95%-16.05%之间,其中位于5号染色体上的RM6024-RM163区间在3个致病小种中均检测到,并且是效应最大的主效QTL。另外,QTL座位的聚合进一步表明,通过不同的QTL座位的聚合能够显著提高水稻白叶枯病的抗性。该研究对拓宽我国白叶枯病抗性基因资源具有重要的意义。

    Abstract:

    Bacterial blight, a major disease in rice, poses a serious impact on rice production. In this study, a doubled haploid (DH) population derived from a cross between the introduced japonica cultivar ‘Maybelle’ and the indica landrace ‘Baiyeqiu’ was used to investigate the pathogenicity of four pathogen races causing bacterial blight. The results showed that the pathogenicity of all the pathogen races exhibited continuous, transgressive distribution in the DH population. Moreover, strong correlations existed between every two pathogen races, with the correlation coefficients ranging from 0.3 to 0.6. A total of 12 quantitative trait loci (QTLs) distributed on chromosomes 1, 2, 3, 5, 6, 7, 9, and 12 were detected for rice bacterial blight, explaining 4.95% to 16.05% of the phenotype. Among these QTLs, a major QTL located in the interval RM6024-RM163 on chromosome 5 was detected in three pathogen races. In addition, the pyramiding of the positive alleles can apparently improve the rice resistance to bacterial blight. This study is of great significance for broadening the genetic resources with resistance to bacterial blight in China.

    参考文献
    [1] 应俊杰, 余山红, 项加青, 朱贵平, 徐丹亭, 王会福. 不同杂交水稻品种在白叶枯病发生区种植表现比较[J]. 杂交水稻, 2023, 38(3): 150-153. YING JJ, YU SH, XIANG JQ, ZHU GP, XU DT, WANG HF. Comparison of planting performance of different hybrid rice varieties in bacterial leaf blight areas[J]. Hybrid Rice, 2023, 38(3): 150-153(in Chinese).
    [2] CHEN XF, LIU PC, MEI L, HE XL, CHEN L, LIU H, SHEN SR, JI ZD, ZHENG XX, ZHANG YC, GAO ZY, ZENG DL, QIAN Q, MA BJ. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Communications, 2021, 2(3): 100143.
    [3] JIANG N, YAN J, LIANG Y, SHI YL, HE ZZ, WU YT, ZENG Q, LIU XL, PENG JH. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)-an updated review[J]. Rice, 2020, 13(1): 3.
    [4] RONALD PC, ALBANO B, TABIEN R, ABENES L, WU KS, McCOUCH S, TANKSLEY SD. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21[J]. Molecular and General Genetics MGG, 1992, 236(1): 113-120.
    [5] SONG WY, WANG GL, CHEN LL, KIM HS, PI LY, HOLSTEN T, GARDNER J, WANG B, ZHAI WX, ZHU LH, FAUQUET C, RONALD P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243): 1804-1806.
    [6] XING JX, ZHANG DY, YIN FY, ZHONG QF, WANG B, XIAO SQ, KE X, WANG LX, ZHANG Y, ZHAO CM, LU YD, CHEN L, CHENG ZQ, CHEN LJ. Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon)[J]. Plant Disease, 2021, 105(12): 4106-4112.
    [7] 陈洛, 朱稳, 李雯慧, 赵均良, 周玲燕, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2023: 1-8. CHEN L, ZHU Y, LI WH, ZHAO JL, ZHOU LY, YANG W. Progress in research and application of resistance genes to white leaf blight in rice[J]. Crops, 2023: 1-8(in Chinese).
    [8] YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, TOKI S, WANG ZX, KONO I, KURATA N, YANO M, IWATA N, SASAKI T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1663-1668.
    [9] LUU DD, JOE A, CHEN Y, PARYS K, BAHAR O, PRUITT R, CHAN LJG, PETZOLD CJ, LONG K, ADAMCHAK C, STEWART V, BELKHADIR Y, RONALD PC. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8525-8534.
    [10] SUN XL, CAO YL, YANG ZF, XU CG, LI XH, WANG SP, ZHANG QF. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. The Plant Journal: for Cell and Molecular Biology, 2004, 37(4): 517-527.
    [11] CHU ZH, FU BY, YANG H, XU CG, LI ZK, SANCHEZ A, PARK YJ, BENNETZEN JL, ZHANG QF, WANG SP. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2006, 112(3): 455-461.
    [12] ANTONY G, ZHOU JH, HUANG S, LI T, LIU B, WHITE F, YANG B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. The Plant Cell, 2010, 22(11): 3864-3876.
    [13] LIU QS, YUAN M, ZHOU Y, LI XH, XIAO JH, WANG SP. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant, Cell & Environment, 2011, 34(11): 1958-1969.
    [14] 陈贤, 赵延存, 明亮, 杨勇, 刘凤权. 水稻白叶枯病抗性相关基因的研究进展[J]. 江苏农业学报, 2022, 38(5): 1402-1410. CHEN X, ZHAO YC, MING L, YANG Y, LIU FQ. Update of rice bacterial blight resistance genes[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1402-1410(in Chinese).
    [15] GU K, TIAN D, YANG F, WU L, SREEKALA C, WANG D, WANG GL,琠?汉潎挠畚献?浈慩灧灨椭湲来?楯湬?扴楩灯慮爠敧湥瑮慥汴?灣漠灭畡汰慰瑩楮潧渠獯学?崼? ̄员桡攲??牴漩瀼??漾甬爠湡愠汮??㈠ぢ???????????????????扩牳?孡??嵥????佥唠???卲????传?奩??奲?乺佡????偩?啡????????乊卝吮删啔??????佯割?却???????????佰啬???匠則????佩?女?????乲佥却?味??呥??奮?丠佁?偧??????乥匠呇剥啮??????伲到?匴?????????删攸瀰漰爭琸‰漷渮?兢呲??渱漶浝攠湔捉汁慎琠畄牓攬嬠?嵁??删楊捘攬??故湎敇琠?丬攠睇獕氠???????????????????戬爠?孈??崠??唬传??偈???唠?啕?吠?呃?倠???????剈??佉删乍?删呗??坔??呆???????剚?丮????嘠偲??奥?乔?????呦桥散??楲?塤慥???楤??牴攠獲楥獳瑩慳湴捡敮?来攠湰敲?杴略慩牮搠獘?琱栰攠?牲楩捧敧?獲畳猠捣敥灬瑬椠扤楥污楴瑨礠?杮敤渠散??楣?卵坭??呥????楩??愠杩慮椠湴獨瑥?敥确灤汯潰楬瑡慳瑭楩潣渠?扥祴?瑣桵敬?扭慛捊瑝攮爠楔慨汥?扐汬楡杮桴琠?灥慬瑬栬漠朲攰渱嬴?崠??倨氱愩渺琠??漷洭洵由渵椮挼慢瑲椾潛渱猷???ぁ????????????い?????扎片?字??崠?塉啄?婒奉??塓唬?塃???圠?丬??奉?????啚????????奚??奎?丠??夠奆????啅????娠佇啁????????么??奅????瘬愠牒楏敎摁??瘠牐塃愮㈠??氾楘歡攲?呄??? ̄攠湥慮扣汯敤獥?琠桡攠?扥慣捥瑰整牯楲愭汬?扫汥椠杭桯瑬?灣慵瑬桥漠杷敩湴?琠潡?慬癥潵楣摩?扥攭楲湩杣?琠牲慥灰灥敡摴?扤祯??楩?堠慴????楤??牥敲獭楩獮瑥慳渠捲敡?来攭湳数?楣湩?物楣挠敲孥?嵯???潴畩牯湮愠污?潤映??搠癳慵湢捪敥摣?删整獯攠慡牤捡桰???づ㈠?????????????㈠??扥爠?孬??嵴?千?乬??????嘸?????夵??匠?丶???匷????啲举??????????坃????午????啘卐???十???慌瀬瀠楇湁杏?潙昬?扚慈捕琠救牌椬愠汚?扅汎楇朠桃瑋?爠救獉楎猠瑔慆測挠敌?朠教湑攬??楈?砠慊???楚??畎獇椠湍杗?洠楙捁牎潇猠慂琬攠汌汉楕琠教?洬愠牚歈敁牏猠孋?崮??剁椲挳攠??攠湡敮琠楥捸獥?乵整睯獲氠敒琠瑰敲牯???の????ㄠ??の?????????d-spectrum disease resistance in rice[J]. Molecular Plant, 2014: ssu132.
    [19] GU KY, TIAN DS, QIU CX, YIN ZC. Transcription activator-like type III effector AvrXa27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2009, 10(6): 829-835.
    [20] 彭小群, 王梦龙. 水稻白叶枯病抗性基因研究进展[J]. 植物生理学报, 2022, 58(3): 472-482. PENG XQ, WANG ML. Research advances on resistance genes to bacterial blight disease in rice[J]. Plant Physiology Journal, 2022, 58(3): 472-482(in Chinese).
    [21] 杨窑龙, 饶玉春, 李赓觅, 黄李超, 冷语佳, 张光恒, 高振宇, 胡江, 朱丽, 郭龙彪, 钱前, 曾大力. 水稻茎秆相关性状遗传分析[J]. 分子植物育种, 2011, 9(2): 160-168. YANG YL, RAO YC, LI GM, HUANG LC, LENG YJ, ZHANG GH, GAO ZY, HU J, ZHU L, GUO LB, QIAN Q, ZENG DL. Genetic analysis of culms traits in rice[J]. Molecular Plant Breeding, 2011, 9(2): 160-168(in Chinese).
    [22] MENG L, LI HH, ZHANG LY, WANG JK. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trai
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘玉婷,袁筱萍,杨惠敏,黄佳慧,朱哲楠,卢钿钿,沈思怡,杨窑龙,饶玉春. 水稻白叶枯病抗性遗传解析[J]. 生物工程学报, 2024, 40(4): 1040-1049

复制
分享
文章指标
  • 点击次数:288
  • 下载次数: 853
  • HTML阅读次数: 515
  • 引用次数: 0
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:2024-02-04
  • 在线发布日期: 2024-03-25
  • 出版日期: 2024-04-25
文章二维码
您是第5990806位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司