荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析
作者:
基金项目:

乡村振兴战略专项资金(农业科技能力提升)项目(2023TS-2-3);茂名市科技计划(2022DZXHT058);汕尾市科技计划(2022A003)


Identification and expression analysis of the HSP70 gene family under abiotic stresses in Litchi chinensis
Author:
  • FAN Chao

    FAN Chao

    Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs;Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Jie

    YANG Jie

    Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs;Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Rong

    CHEN Rong

    Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs;Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Wei

    LIU Wei

    Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs;Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIANG Xu

    XIANG Xu

    Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs;Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • | | | |
  • 文章评论
    摘要:

    HSP70蛋白作为热激蛋白(heat shock protein, HSP)家族重要成员之一,在植物的生长发育、逆境胁迫等过程中发挥着重要作用。为探究荔枝(Litchi chinensis) HSP70基因家族成员在应对低温、高温、干旱及盐胁迫环境时的作用,利用生物信息学方法鉴定荔枝全基因组中的HSP70基因家族,并通过实时荧光定量PCR (quantitative real-time PCR, qRT-PCR)技术检测HSP70家族成员在不同非生物胁迫处理下的表达模式。结果显示,LcHSP70基因家族共包含18个成员,不均匀地分布在荔枝的10条染色体上,其蛋白包含479-851个不等的氨基酸,等电点介于5.07-6.95之间,分子质量为52.44-94.07 kDa。LcHSP70蛋白在细胞核、细胞质、内质网、线粒体和叶绿体中有分布。系统进化分析发现LcHSP70蛋白分布在5个亚族,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅵ亚族。LcHSP70s启动子区域拥有多种与植物生长发育、激素响应及逆境响应相关的顺式作用元件。转录组数据分析显示,LcHSP70s存在明显的组织表达特异性,总体上可分为普遍性表达和特异性表达。非生物胁迫表达分析显示,该基因家族成员均可以对低温、高温、干旱和盐胁迫作出不同程度的反应,且在不同时间表达差异显著。上述研究结果为进一步探究荔枝HSP70基因家族的功能奠定了基础。

    Abstract:

    HSP70 protein, as an important member of the heat shock protein (HSP) family, plays an important role in plant growth, development, and response to biotic and abiotic stresses. In order to explore the role of HSP70 gene family members in Litchi chinensis under low temperature, high temperature, drought, and salt stress, bioinformatics methods were used to identify the HSP70 gene family members within the entire L. chinensis genome. The expression of these genes under various abiotic stresses was then detected using quantitative real-time PCR (qRT-PCR). The results showed that the LcHSP70 gene family consisted of 18 members, which were unevenly distributed across ten L. chinensis chromosomes. The LcHSP70 protein contained 479-851 amino acids, with isoelectric points ranging from 5.07 to 6.95, and molecular weights from 52.44 kDa to 94.07 kDa. The predicted subcellular localization showed that LcHSP70 protein was present in the nucleus, cytoplasm, endoplasmic reticulum, mitochondria, and chloroplast. Phylogenetic analysis divided the LcHSP70 proteins into five subgroups, namely Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅵ. The promoter regions of the LcHSP70 genes contained various cis-acting elements related to plant growth, development, hormone response, and stress response. Moreover, the expression of LcHSP70 genes displayed distint tissue-specific expression level, categorized into universal expression and specific expression. From the selected 6 LcHSP70 genes (i.e., LcHSP70-1, LcHSP70-5, LcHSP70-10, LcHSP70-14, LcHSP70-16, and LcHSP70-18), their relative expression levels were assessed under different abiotic stresses using qRT-PCR. The results indicated that the gene family members exhibited diverse responses to low temperature, high temperature, drought, and salt stress, with significant variations in their expression levels across different time periods. These results provide a foundation for further exploration of the function of the LcHSP70 gene family.

    参考文献
    [1] ZHU JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
    [2] ZHANG HM, ZHU JH, GONG ZZ, ZHU JK. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2022, 23(2): 104-119.
    [3] REHMAN A, ATIF RM, QAYYUM A, DU XM, HINZE L, AZHAR MT. Genome-wide identification and characterization of HSP70 gene family in four species of cotton[J]. Genomics, 2020, 112(6): 4442-4453.
    [4] YER EN, BALOGLU MC, ZIPLAR UT, AYAN S, UNVER T. Drought-responsive Hsp70 gene analysis in Populus at genome-wide level[J]. Plant Molecular Biology Reporter, 2016, 34(2): 483-500.
    [5] PANZADE KP, KALE SS, CHAVAN NR, HATZADE B. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba[J]. Cell Stress and Chaperones, 2021, 26(2): 341-353.
    [6] JASROTIA RS, JAISWAL S, YADAV PK, RAZA M, IQUEBAL MA, RAI A, KUMAR D. Genome-wide analysis of HSP70 family protein in Vigna radiata and coexpression analysis under abiotic and biotic stress[J]. Journal of Computational Biology, 2020, 27(5): 738-754.
    [7] JUNG KH, GHO HJ, NGUYEN MX, KIM SR, AN G. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress[J]. Functional & Integrative Genomics, 2013, 13(3): 391-402.
    [8] ZHANG L, ZHAO HL, DONG QL, ZHANG YY, WANG YM, LI HY, XING GJ, LI QY, DONG YS. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.)[J]. Frontiers in Plant Science, 2015, 6: 773-787.
    [9] GUO M, LIU JH, MA X, ZHAI YF, GONG ZH, LU MH. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Science, 2016, 252: 246-256.
    [10] LIU J, PANG X, CHENG Y, YIN YH, ZHANG Q, SU WB, HU B, GUO QW, HA S, ZHANG JP, WAN HJ. The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns[J]. Scientific Reports, 2018, 8(1): 16628.
    [11] JUNGKUNZ I, LINK K, VOGEL F, VOLL LM, SONNEWALD S, SONNEWALD U. AtHsp70-15- deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995.
    [12] SARKAR NK, KUNDNANI P, GROVER A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa)[J]. Cell Stress and Chaperones, 2013, 18(4): 427-437.
    [13] 胡冰. ABA调控荔枝果皮叶绿素降解和花色苷生物合成的分子机理研究[D]. 广州: 华南农业大学博士学位论文, 2018. HU B. Study on the molecular mechanism of ABA in regulating chlorophyll degradation and anthocyanin biosynthesis in pericarp of Litchi chinensis[D]. Guangzhou: Doctoral Dissertation of South China Agricultural University, 2018(in Chinese).
    [14] 温珍熹. 荔枝果实脱落相关NAC转录因子的筛选及功能分析[D]. 广州: 华南农业大学硕士学位论文, 2019. WEN ZX. Screening and function analysis of litchi NAC transcription factors involved in fruit abscission[D]. Guangzhou: Master’s Thesis of South China Agricultural University, 2019(in Chinese).
    [15] 白慧卿, 吴建国, 潘学标. 影响我国荔枝分布的关键气候要素分析[J]. 果树学报, 2016, 33(4): 436-443. BAI HQ, WU JG, PAN XB. Key climatic factors affecting the distribution of litchi in China[J]. Journal of Fruit Science, 2016, 33(4): 436-443(in Chinese).
    [16] HU GB, FENG JT, XIANG X, WANG JB, SALOJÄRVI J, LIU CM, WU ZX, ZHANG JS, LIANG XM, JIANG ZD, LIU W, OU LX, LI JW, FAN GY, MAI YX, CHEN CJ, ZHANG XT, ZHENG JK, ZHANG YQ, PENG HX, et al. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars[J]. Nature Genetics, 2022, 54(1): 73-83.
    [17] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
    [18] SUN JH, CAO LL, LI HL, WANG G, WANG SJ, LI F, ZOU XX, WANG JB. Early responses given distinct tactics to infection of Peronophythora litchii in susceptible and resistant litchi cultivar[J]. Scientific Reports, 2019, 9: 2810.
    [19] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408.
    [20] SOLTANI BM, EHLTING J, HAMBERGER B, DOUGLAS CJ. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members[J]. Planta, 2006, 224(5): 1226-1238.
    [21] WALTHER D, BRUNNEMANN R, SELBIG J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana[J]. PLoS Genetics, 2007, 3(2): e11.
    [22] ABDULLAH M, CHENG X, CAO YP, SU XQ, MANZOOR MA, GAO JS, CAI YP, LIN Y. Zinc finger-homeodomain transcriptional factors (ZHDs) in upland cotton (Gossypium hirsutum): genome-wide identification and expression analysis in fiber development[J]. Frontiers in Genetics, 2018, 9: 357.
    [23] SONG ZP, PAN FL, LOU XP, WANG DB, YANG C, ZHANG BQ, ZHANG HY. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum[J]. Molecular Biology Reports, 2019, 46(2): 1941-1954.
    [24] DAVOUDI M, CHEN JF, LOU QF. Genome-wide identification and expression analysis of heat shock protein 70(HSP70) gene family in pumpkin (Cucurbita moschata) rootstock under drought stress suggested the potential role of these chaperones in stress tolerance[J]. International Journal of Molecular Sciences, 2022, 23(3): 1918-1933.
    [25] JIANG LY, HU WJ, QIAN YX, REN QY, ZHANG J. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize[J]. Gene, 2021, 770: 145348.
    [26] SU HN, XING MM, LIU X, FANG ZY, YANG LM, ZHUANG M, ZHANG YY, WANG Y, LV HH. Genome-wide analysis of HSP70 family genes in cabbage (Brassica oleracea var. capitata) reveals their involvement in floral development[J]. BMC Genomics, 2019, 20(1): 369-382.
    [27] LAI DL, YAN J, FAN Y, LI Y, RUAN JJ, WANG JZ, FAN Y, CHENG XB, CHENG JP. Genome-wide identification and phylogenetic relationships of the Hsp70 gene family of Aegilops tauschii, wild emmer wheat (Triticum dicoccoides) and bread wheat (Triticum aestivum)[J]. 3 Biotech, 2021, 11(6): 301-316.
    [28] CHAUDHARY R, BARANWAL VK, KUMAR R, SIRCAR D, CHAUHAN H. Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress conditions and reproductive development[J]. Functional & Integrative Genomics, 2019, 19(6): 1007-1022.
    [29] LIU XN, CHEN HY, LI SC, WANG LJ. Genome-wide identification of the Hsp70 gene family in grape and their expression profile during abiotic stress[J]. Horticulturae, 2022, 8(8): 743.
    [30] 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. MA WF, LI YM, MA ZH, CHEN BH, MAO J. Identification of apple POD gene family and functional analysis of MdPOD15 gene[J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199(in Chinese).
    [31] MA J, WANG QL, SUN RR, XIE FL, JONES DC, ZHANG BH. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii[J]. Scientific Reports, 2014, 4: 6645.
    [32] WANG HM, DONG ZQ, CHEN JB, WANG M, DING YT, XUE QY, LIU W, NIU ZT, DING XY. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale[J]. Frontiers in Plant Science, 2022, 13: 979801.
    [33] GARLOS MH, FINER JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 2014, 217/218: 109-119.
    [34] SAH SK, REDDY KR, LI JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontiers in Plant Science, 2016, 7: 571.
    [35] 李可心, 王颖, 姚明东, 肖文海. 脱落酸生物合成研究进展[J]. 生物工程学报, 2023, 39(6): 2190-2203. LI KX, WANG Y, YAO MD, XIAO WH. Advances in abscisic acid biosynthesis[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2190-2203(in Chinese).
    [36] 田介云. 花椒幼苗低温胁迫下生理和分子响应机制研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2022. TIAN JY. Physiological and molecular response mechanism of Zanthoxylum bungeanum seedlings under low temperature stress[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2022(in Chinese).
    [37] 李玉言, 张泽人, 邸泽鑫, 戚相玉, 张炎, 王聪, 鲁仪增, 郑健. 花楸树HSP70基因家族鉴定及其应答非生物胁迫表达分析[J]. 基因组学与应用生物学, 2022, 41(9): 1973-1984. LI YY, ZHANG ZR, DI ZX, QI XY, ZHANG Y, WANG C, LU YZ, ZHENG J. Genome-wide investigation of heat shock protein 70 gene family in Sorbus pohuashanensis and their expression analysis in response to abiotic stresses[J]. Genomics and Applied Biology, 2022, 41(9): 1973-1984(in Chinese).
    [38] CHEN HY, HSIEH EJ, CHENG MC, CHEN CY, HWANG SY, LIN TP. ORA47(octadecanoid- responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element[J]. The New Phytologist, 2016, 211(2): 599-613.
    [39] ZHANG L, SONG ZQ, LI FF, LI XX, JI HK, YANG SS. The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat[J]. BMC Plant Biology, 2019, 19(1): 566.
    [40] 刘阳. 普通小麦热激蛋白70基因家族分析及TaHsp70-47的克隆[D]. 杨凌: 西北农林科技大学硕士学位论文, 2021. LIU Y. Genome-wide analysis of Hsp70 gene family and cloning of TaHsp70-47 gene in wheat[D]. Yangling: Master’s Thesis of Northwest A&F University, 2021(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

凡超,杨杰,陈蓉,刘伟,向旭. 荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析[J]. 生物工程学报, 2024, 40(4): 1102-1119

复制
分享
文章指标
  • 点击次数:288
  • 下载次数: 1071
  • HTML阅读次数: 440
  • 引用次数: 0
历史
  • 收稿日期:2023-06-20
  • 最后修改日期:2024-01-02
  • 在线发布日期: 2024-03-25
  • 出版日期: 2024-04-25
文章二维码
您是第5990949位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司