粪菌移植治疗神经系统疾病的研究进展
作者:
基金项目:

国家自然科学基金(32230081, 32302251)


Advances in the application of fecal microbiota transplantation for the treatment of nervous system diseases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [73]
  • | | | |
  • 文章评论
    摘要:

    肠道微生物与中枢神经系统的功能密切相关,可通过神经途径、免疫途径及微生物代谢物等在肠-脑轴作用下影响宿主大脑。肠道微生物失调与抑郁症、阿尔兹海默症、帕金森病等神经系统疾病的发生发展密切相关,并且粪菌移植可以改善神经系统疾病动物模型或临床患者的症状。本文对人体肠道菌群的组成、功能以及菌群通过肠-脑轴与神经系统疾病的联系进行综述,并对粪菌移植在治疗神经系统疾病的研究进展和作用机制进行探讨,为临床治疗神经疾病提供了新思路。

    Abstract:

    The intestinal microbiota exhibits a strong correlation with the function of the central nervous system, exerting influence on the host brain through neural pathways, immune pathways, and microbial metabolites along the gut-brain axis. Disorders in the composition of the intestinal microbial are closely associated with the onset and progression of neurological disorders, such as depression, Alzheimer’s disease, and Parkinson’s disease. It has been proven that fecal microbiota transplantation can improve symptoms in animal models of neurological diseases and clinical patients. This paper provides a comprehensive review of the composition and function of the human intestinal microbiota, as well as the intricate the relationship between the human intestinal microbiota and nervous system diseases through the gut-brain axis. Additionally, it delves into the research advancements and underlying mechanism of fecal microbiota transplantation in the treatment of nervous system diseases. These findings offer novel insights and potential avenues for clinical interventions targeting nervous system diseases.

    参考文献
    [1] 谢雅静, 时晓敏, 颜世敢, 朱丽萍. 肠道菌群与精神类疾病相关性研究进展[J]. 中国药理学通报, 2022, 38(11): 1617-1622.XIE YJ, SHI XM, YAN SG, ZHU LP. Progress on correlation between intestinal flora and mental diseases[J]. Chinese Pharmacological Bulletin, 2022, 38(11): 1617-1622 (in Chinese).
    [2] KIM YK, SHIN C. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments[J]. Current Neuropharmacology, 2018, 16(5): 559-573.
    [3] WANG Y, ZHENG FL, LIU S, LUO HH. Research progress in fecal microbiota transplantation as treatment for irritable bowel syndrome[J]. Gastroenterology Research and Practice, 2019, 2019: 9759138.
    [4] HERTLI S, ZIMMERMANN P. Molecular interactions between the intestinal microbiota and the host[J]. Molecular Microbiology, 2022, 117(6): 1297-1307.
    [5] FLEMER B, LYNCH DB, BROWN JMR, JEFFERY IB, RYAN FJ, CLAESSON MJ, O’RIORDAIN M, SHANAHAN F, O’TOOLE PW. Tumour-associated and non-tumour-associated microbiota in colorectal cancer[J]. Gut, 2017, 66(4): 633-643.
    [6] WEERSMA RK, ZHERNAKOVA A, FU JY. Interaction between drugs and the gut microbiome[J]. Gut, 2020, 69(8): 1510-1519.
    [7] CLEMENTE JC, URSELL LK, PARFREY LW, KNIGHT R. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012, 148(6): 1258-1270.
    [8] CARABOTTI M, SCIROCCO A, MASELLI MA, SEVERI C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems[J]. Annals of Gastroenterology, 2015, 28(2): 203-209.
    [9] SENDER R, MILO R. The distribution of cellular turnover in the human body[J]. Nature Medicine, 2021, 27: 45-48.
    [10] MA QQ, XING CS, LONG WY, WANG HY, LIU Q, WANG RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis[J]. Journal of Neuroinflammation, 2019, 16(1): 53.
    [11] YU CD, XU QJ, CHANG RB. Vagal sensory neurons and gut-brain signaling[J]. Current Opinion in Neurobiology, 2020, 62: 133-140.
    [12] BRAVO JA, FORSYTHE P, CHEW MV, ESCARAVAGE E, SAVIGNAC HM, DINAN TG, BIENENSTOCK J, CRYAN JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 16050-16055.
    [13] SITTIPO P, CHOI J, LEE S, LEE YK. The function of gut microbiota in immune-related neurological disorders: a review[J]. Journal of Neuroinflammation, 2022, 19(1): 154.
    [14] AGIRMAN G, YU KB, HSIAO EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571): 1087-1092.
    [15] ALLENDORF DH, FRANSSEN EH, BROWN GC. Lipopolysaccharide activates microglia via neuraminidase 1 desialylation of Toll-like receptor 4[J]. Journal of Neurochemistry, 2020, 155(4): 403-416.
    [16] CORRÊA-OLIVEIRA R, FACHI JL, VIEIRA A, SATO FT, VINOLO MAR. Regulation of immune cell function by short-chain fatty acids[J]. Clinical & Translational Immunology, 2016, 5(4): e73.
    [17] GOSWAMI C, IWASAKI Y, YADA T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons[J]. The Journal of Nutritional Biochemistry, 2018, 57: 130-135.
    [18] STRANDWITZ P. Neurotransmitter modulation by the gut microbiota[J]. Brain Research, 2018, 1693: 128-133.
    [19] ZIPP F, BITTNER S, SCHAFER DP. Cytokines as emerging regulators of central nervous system synapses[J]. Immunity, 2023, 56(5): 914-925.
    [20] YANG HL, LI MM, ZHOU MF, XU HS, HUAN F, LIU N, GAO R, WANG J, ZHANG N, JIANG L. Links between gut dysbiosis and neurotransmitter disturbance in chronic restraint stress-induced depressive behaviours: the role of inflammation[J]. Inflammation, 2021, 44(6): 2448-2462.
    [21] LIU SH, GUO RJ, LIU F, YUAN QJ, YU Y, REN FF. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway[J]. Neuropsychiatric Disease and Treatment, 2020, 16: 859-869.
    [22] LIN CH, CHEN CC, CHIANG HL, LIOU JM, CHANG CM, LU TP, CHUANG EY, TAI YC, CHENG C, LIN HY, WU MS. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease[J]. Journal of Neuroinflammation, 2019, 16(1): 129.
    [23] GAREAU MG, WINE E, RODRIGUES DM, CHO JH, WHARY MT, PHILPOTT DJ, MACQUEEN G, SHERMAN PM. Bacterial infection causes stress-induced memory dysfunction in mice[J]. Gut, 2011, 60(3): 307-317.
    [24] KELLY JR, BORRE Y, O’BRIEN C, PATTERSON E, EL AIDY S, DEANE J, KENNEDY PJ, BEERS S, SCOTT K, MOLONEY G, HOBAN AE, SCOTT L, FITZGERALD P, ROSS P, STANTON C, CLARKE G, CRYAN JF, DINAN TG. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. Journal of Psychiatric Research, 2016, 82: 109-118.
    [25] RONG H, XIE XH, ZHAO J, LAI WT, WANG MB, XU D, LIU YH, GUO YY, XU SX, DENG WF, YANG QF, XIAO L, ZHANG YL, HE FS, WANG S, LIU TB. Similarly in depression, nuances of gut microbiota: evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients[J]. Journal of Psychiatric Research, 2019, 113: 90-99.
    [26] LIU P, WU L, PENG GP, HAN YQ, TANG RQ, GE JP, ZHANG LJ, JIA LF, YUE SQ, ZHOU K, LI LJ, LUO BY, WANG BH. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort[J]. Brain, Behavior, and Immunity, 2019, 80: 633-643.
    [27] PARK SH, LEE JH, SHIN J, KIM JS, CHA B, LEE S, KWON KS, SHIN YW, CHOI SH. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report[J]. Current Medical Research and Opinion, 2021, 37(10): 1739-1744.
    [28] SCHEPERJANS F, AHO V, PEREIRA PAB, KOSKINEN K, PAULIN L, PEKKONEN E, HAAPANIEMI E, KAAKKOLA S, EEROLA- RAUTIO J, POHJA M, KINNUNEN E, MURROS K, AUVINEN P. Gut microbiota are related to Parkinson’s disease and clinical phenotype[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2015, 30(3): 350-358.
    [29] de ANGELIS M, FRANCAVILLA R, PICCOLO M, de GIACOMO A, GOBBETTI M. Autism spectrum disorders and intestinal microbiota[J]. Gut Microbes, 2015, 6(3): 207-213.
    [30] FINEGOLD SM, DOWNES J, SUMMANEN PH. Microbiology of regressive autism[J]. Anaerobe, 2012, 18(2): 260-262.
    [31] CAPUTI V, MARSILIO I, FILPA V, CERANTOLA S, ORSO G, BISTOLETTI M, PACCAGNELLA N, de MARTIN S, MONTOPOLI M, DALLACQUA S, CREMA F, Di GANGI IM, GALUPPINI F, LANTE I, BOGIALLI S, RUGGE M, DEBETTO P, GIARONI C, GIRON MC. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice[J]. British Journal of Pharmacology, 2017, 174(20): 3623-3639.
    [32] YAMANBAEVA G, SCHAUB AC, SCHNEIDER E, SCHWEINFURTH N, KETTELHACK C, DOLL JPK, MÄHLMANN L, BRAND S, BEGLINGER C, BORGWARDT S, LANG UE, SCHMIDT A. Effects of a probiotic add-on treatment on fronto-limbic brain structure, function, and perfusion in depression: secondary neuroimaging findings of a randomized controlled trial[J]. Journal of Affective Disorders, 2023, 324: 529-538.
    [33] GENG SJ, CHENG SS, LI Y, WEN ZS, MA X, JIANG XM, WANG YZ, HAN XY. Faecal microbiota transplantation reduces susceptibility to epithelial injury and modulates tryptophan metabolism of the microbial community in a piglet model[J]. Journal of Crohn’s and Colitis, 2018, 12(11): 1359-1374.
    [34] FAREED S, SARODE N, STEWART FJ, MALIK A, LAGHAIE E, KHIZER S, YAN FX, PRATTE Z, LEWIS J, IMMERGLUCK LC. Applying fecal microbiota transplantation (FMT) to treat recurrent Clostridium difficile infections (rCDI) in children[J]. PeerJ, 2018, 6: e4663.
    [35] PARAMSOTHY S, NIELSEN S, KAMM MA, DESHPANDE NP, FAITH JJ, CLEMENTE JC, PARAMSOTHY R, WALSH AJ, van den BOGAERDE J, SAMUEL D, LEONG RWL, CONNOR S, NG W, LIN E, BORODY TJ, WILKINS MR, COLOMBEL JF, MITCHELL HM, KAAKOUSH NO. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis[J]. Gastroenterology, 2019, 156(5): 1440-1454.e2.
    [36] HERRMAN H, KIELING C, McGORRY P, HORTON R, SARGENT J, PATEL V. Reducing the global burden of depression: a Lancet-World Psychiatric Association Commission[J]. Lancet, 2019, 393(10189): e42-e43.
    [37] 尹一淑, 刘军莲, 王佳平, 朱元兵, 李勇枝, 卢卫红. 抑郁症相关发病机制研究进展[J]. 医学综述, 2022, 28(12): 2368-2372.YIN YS, LIU JL, WANG JP, ZHU YB, LI YZ, LU WH. Research progress in pathogenesis of depression[J]. Medical Recapitulate, 2022, 28(12): 2368-2372 (in Chinese).
    [38] CRUZ-PEREIRA JS, REA K, NOLAN YM, O’LEARY OF, DINAN TG, CRYAN JF. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome[J]. Annual Review of Psychology, 2020, 71: 49-78.
    [39] 张楠, 许二平, 陈玉龙. NLRP3炎症小体与抑郁症的关系及中医药的干预作用[J]. 中国实验方剂学杂志, 2023, 29(3): 186-193.
    ZHANG N, XU EP, CHEN YL. Relationship between NLRP3 inflammasome and depression and intervention effect of traditional Chinese medicine: a review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(3): 186-193 (in Chinese).
    [40] ZHANG Y, HUANG RR, CHENG MJ, WANG LR, CHAO J, LI JX, ZHENG P, XIE P, ZHANG ZJ, YAO HH. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2[J]. Microbiome, 2019, 7(1): 116.
    [41] MARCONDES ÁVILA PR, FIOROT M, MICHELS M, DOMINGUINI D, ABATTI M, VIEIRA A, de MOURA AB, BEHENCK JP, BORBA LA, BOTELHO MEM, RÉUS GZ, DAL-PIZZOL F, RITTER C. Effects of microbiota transplantation and the role of the vagus nerve in gut-brain axis in animals subjected to chronic mild stress[J]. Journal of Affective Disorders, 2020, 277: 410-416.
    [42] RAO JJ, XIE RN, LIN L, JIANG J, DU L, ZENG XD, LI GY, WANG CM, QIAO Y. Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress-induced depressive-like behavior[J]. The European Journal of Neuroscience, 2021, 53(11): 3598-3611.
    [43] CAI T, SHI X, YUAN LZ, TANG D, WANG F. Fecal microbiota transplantation in an elderly patient with mental depression[J]. International Psychogeriatrics, 2019, 31(10): 1525-1526.
    [44] YANG CL, HU TJ, XUE X, SU XH, ZHANG X, FAN YH, SHEN XB, DONG XS. Multi-omics analysis of fecal microbiota transplantation’s impact on functional constipation and comorbid depression and anxiety[J]. BMC Microbiology, 2023, 23(1): 389.
    [45] SCHELTENS P, de STROOPER B, KIVIPELTO M, HOLSTEGE H, CHÉTELAT G, TEUNISSEN CE, CUMMINGS J, van der FLIER WM. Alzheimer’s disease[J]. Lancet, 2021, 397(10284): 1577-1590.
    [46] WANG XY, SUN GQ, FENG T, ZHANG J, HUANG X, WANG T, XIE ZQ, CHU XK, YANG J, WANG H, CHANG SS, GONG YX, RUAN LF, ZHANG GQ, YAN SY, LIAN W, DU C, YANG DB, ZHANG QL, LIN FF, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression[J]. Cell Research, 2019, 29: 787-803.
    [47] PISTOLLATO F, SUMALLA CANO S, ELIO I, MASIAS VERGARA M, GIAMPIERI F, BATTINO M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease[J]. Nutrition Reviews, 2016, 74(10): 624-634.
    [48] SUN J, XU JX, LING Y, WANG FY, GONG TY, YANG CW, YE SQ, YE KY, WEI DH, SONG ZQ, CHEN DN, LIU JM. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice[J]. Translational Psychiatry, 2019, 9: 189.
    [49] KIM MS, KIM Y, CHOI H, KIM W, PARK S, LEE D, KIM DK, KIM HJ, CHOI H, HYUN DW, LEE JY, CHOI EY, LEE DS, BAE JW, MOOK-JUNG I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model[J]. Gut, 2020, 69(2): 283-294.
    [50] ZHANG T, GAO GQ, KWOK LY, SUN ZH. Gut microbiome-targeted therapies for Alzheimer’s disease[J]. Gut Microbes, 2023, 15(2): 2271613.
    [51] DODIYA HB, KUNTZ T, SHAIK SM, BAUFELD C, LEIBOWITZ J, ZHANG XL, GOTTEL N, ZHANG XQ, BUTOVSKY O, GILBERT JA, SISODIA SS. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes[J]. The Journal of Experimental Medicine, 2019, 216(7): 1542-1560.
    [52] LIM SY, TAN AH, AHMAD-ANNUAR A, KLEIN C, TAN LCS, ROSALES RL, BHIDAYASIRI R, WU YR, SHANG HF, EVANS AH, PAL PK, HATTORI N, TAN CT, JEON B, TAN EK, LANG AE. Parkinson’s disease in the western Pacific region[J]. The Lancet Neurology, 2019, 18(9): 865-879.
    [53] WALLEN ZD, APPAH M, DEAN MN, SESLER CL, FACTOR SA, MOLHO E, ZABETIAN CP, STANDAERT DG, PAYAMI H. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens[J]. NPJ Parkinson’s Disease, 2020, 6: 11.
    [54] SAMPSON TR, DEBELIUS JW, THRON T, JANSSEN S, SHASTRI GG, ILHAN ZE, CHALLIS C, SCHRETTER CE, ROCHA S, GRADINARU V, CHESSELET MF, KESHAVARZIAN A, SHANNON KM, KRAJMALNIK-BROWN R, WITTUNG- STAFSHEDE P, KNIGHT R, MAZMANIAN SK. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J]. Cell, 2016, 167(6): 1469-1480.e12.
    [55] ZHAO Z, NING JW, BAO XQ, SHANG MY, MA JW, LI G, ZHANG D. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9(1): 226.
    [56] SUN MF, ZHU YL, ZHOU ZL, JIA XB, XU YD, YANG Q, CUI C, SHEN YQ. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain, Behavior, and Immunity, 2018, 70: 48-60.
    [57] CHENG Y, TAN GH, ZHU QH, WANG C, RUAN GC, YING SH, QIE JL, HU XF, XIAO ZF, XU FH, CHEN L, CHEN MJ, PEI Y, ZHANG H, TIAN YT, CHEN DF, LIU XY, HUANG HQ, WEI YL. Efficacy of fecal microbiota transplantation in patients with Parkinson’s disease: clinical trial results from a randomized, placebo-controlled design[J]. Gut Microbes, 2023, 15(2): 2284247.
    [58] 薛刘军, 欧洲, 王丽君, 魏明, 杨秀, 郑金龙, 佟强. 粪菌移植替代多巴胺能药物治疗帕金森病案例分析[J]. 临床神经病学杂志, 2019, 32(5): 329-332.
    XUE LJ, OU Z, WANG LJ, WEI Ming, YANG Xiu, ZHENG Jinlong, TONG Qiang. A case analyse of Parkinson’s disease treated with fecal microbiota transplantation instead of dopaminergic drugs[J]. Journal of Clinical Neurology, 2019, 32(5): 329-332 (in Chinese).
    [59] MEIMAND SE, ROSTAM-ABADI Y, REZAEI N. Autism spectrum disorders and natural killer cells: a review on pathogenesis and treatment[J]. Expert Review of Clinical Immunology, 2021, 17(1): 27-35.
    [60] GRIMALDI R, GIBSON GR, VULEVIC J, GIALLOUROU N, CASTRO-MEJÍA JL, HANSEN LH, GIBSON EL, NIELSEN DS, COSTABILE A. A prebiotic intervention study in children with autism spectrum disorders (ASDs)[J]. Microbiome, 2018, 6(1): 133.
    [61] GUO PF, YANG XY, GUO XM, YANG HE, PAN J, LI Y. Dietary fish oil improves autistic behaviors and gut homeostasis by altering the gut microbial composition in a mouse model of fragile X syndrome[J]. Brain, Behavior, and Immunity, 2023, 110: 140-151.
    [62] ZHANG WL, HUANG J, GAO F, YOU QL, DING LY, GONG JW, ZHANG MR, MA RF, ZHENG SH, SUN XD, ZHANG YL. Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice[J]. eBioMedicine, 2022, 86: 104323.
    [63] KANG DW, ADAMS JB, GREGORY AC, BORODY T, CHITTICK L, FASANO A, KHORUTS A, GEIS E, MALDONADO J, MCDONOUGH-MEANS S, POLLARD EL, ROUX S, SADOWSKY MJ, LIPSON KS, SULLIVAN MB, CAPORASO JG, KRAJMALNIK-BROWN R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study[J]. Microbiome, 2017, 5(1): 10.
    [64] KANG DW, ADAMS JB, VARGASON T, SANTIAGO M, HAHN J, KRAJMALNIK-BROWN R, MARCO ML. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy[J]. mSphere, 2020, 5(5): e00314-20.
    [65] KHORUTS A, SADOWSKY MJ. Understanding the mechanisms of faecal microbiota transplantation[J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13: 508-516.
    [66] VARELA RB, VALVASSORI SS, LOPES-BORGES J, MARIOT E, DAL-PONT GC, AMBONI RT, BIANCHINI G, QUEVEDO J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats[J]. Journal of Psychiatric Research, 2015, 61: 114-121.
    [67] WANG Q, LUO YQ, RAY CHAUDHURI K, REYNOLDS R, TAN EK, PETTERSSON S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options[J]. Brain, 2021, 144(9): 2571-2593.
    [68] JING YL, YU Y, BAI F, WANG LM, YANG DG, ZHANG C, QIN C, YANG ML, ZHANG D, ZHU YB, LI JJ, CHEN ZG. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis[J]. Microbiome, 2021, 9(1): 59.
    [69] PLATTEN M, NOLLEN EAA, RÖHRIG UF, FALLARINO F, OPITZ CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond[J]. Nature Reviews Drug Discovery, 2019, 18: 379-401.
    [70] LI J, WANG HD, QING W, LIU FT, ZENG NY, WU F, SHI YY, GAO XX, CHENG M, LI HL, SHEN W, MENG FG, HE Y, CHEN MX, LI Z, ZHOU HW, WANG Q. Congenitally underdeveloped intestine drives autism-related gut microbiota and behavior[J]. Brain, Behavior, and Immunity, 2022, 105: 15-26.
    [71] AZIMIRAD M, YADEGAR A, ASADZADEH AGHDAEI H, KELLY CR. Enterotoxigenic Clostridium perfringens infection as an adverse event after faecal microbiota transplantation in two patients with ulcerative colitis and recurrent Clostridium difficile infection: a neglected agent in donor screening[J]. Journal of Crohn’s and Colitis, 2019, 13(7): 960-961.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马湘宁,张璐佳,高健玮,陈芳. 粪菌移植治疗神经系统疾病的研究进展[J]. 生物工程学报, 2024, 40(5): 1293-1308

复制
分享
文章指标
  • 点击次数:398
  • 下载次数: 856
  • HTML阅读次数: 408
  • 引用次数: 0
历史
  • 收稿日期:2023-06-20
  • 最后修改日期:2023-12-26
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-25
文章二维码
您是第5998212位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司