多萜醇磷酸β-葡萄糖基转移酶的活性和底物特异性分析
作者:
基金项目:

国家自然科学基金(22077053, 32271342);江苏省博士后科研资助计划(2020Z167)


Analysis of enzyme activity and substrate specificity of dolichyl-phosphate b-glucosyltransferase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    内质网(endoplasmic reticulum, ER)是蛋白质折叠和质量控制的主要场所,其内部驻留的分子伴侣能够帮助新生多肽链形成正确的三级结构。部分分子伴侣通过特异性识别葡萄糖基化的N-寡糖结构与糖肽结合,进而促进相应蛋白的折叠。作为ER腔内葡萄糖基化反应的糖基供体,体外获取多萜醇磷酸葡萄糖(dolichol phosphate glucose, Dol-P-Glc)或其类似物对解析N-寡糖生物合成途径及糖蛋白质量控制体系具有重要意义,一直受到科学家们的关注。本研究以化学合成的一系列多萜醇(dolichol)类似物作为底物,对大肠杆菌表达的阴道毛滴虫(Trichomonas vaginalis)来源的多萜醇磷酸β-葡萄糖基转移酶E (dolichyl-phosphate b-glucosyltransferase E, Alg5E)进行了研究。结果表明该重组蛋白在体外具有较强的催化活性,可以识别不同链长的脂肪醇,底物中脂肪醇碳链越长其酶促反应进程越快,且对脂肪醇中异戊二烯的支链甲基表现出偏好性。研究还确认了重要的天冬氨酸-任意氨基酸-天冬氨酸(aspartate-any residue-aspartate, DXD)基序与二价金属离子的结合是该酶发挥催化功能的关键。上述工作为多萜醇寡糖(dolichol-linked oligosaccharide, DLO)合成途径中葡萄糖基转移酶Alg6、Alg8和Alg10的研究打下了基础。

    Abstract:

    Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate b-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme’s catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme’s catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).

    参考文献
    [1] AEBI M, BERNASCONI R, CLERC S, MOLINARI M. N-glycan structures: recognition and processing in the ER[J]. Trends in Biochemical Sciences, 2010, 35(2): 74-82.
    [2] CHEREPANOVA N, SHRIMAL S, GILMORE R. N-linked glycosylation and homeostasis of the endoplasmic reticulum[J]. Current Opinion in Cell Biology, 2016, 41: 57-65.
    [3] BREITLING J, AEBI M. N-linked protein glycosylation in the endoplasmic reticulum[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(8): a013359.
    [4] JARRELL KF, DING Y, MEYER BH, ALBERS SV, KAMINSKI L, EICHLER J. N-linked glycosylation in archaea: a structural, functional, and genetic analysis[J]. Microbiology and Molecular Biology Reviews, 2014, 78(2): 304-341.
    [5] TOUSTOU C, WALET-BALIEU ML, KIEFER-MEYER MC, HOUDOU M, LEROUGE P, FOULQUIER F, BARDOR M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes[J]. Biological Reviews, 2022, 97(2): 732-748.
    [6] GAO XD, NISHIKAWA A, DEAN N. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum[J]. Glycobiology, 2004, 14(6): 559-570.
    [7] BECK PJ, ORLEAN P, ALBRIGHT C, ROBBINS PW, GETHING MJ, SAMBROOK JF. The Saccharomyces cerevisiae dpm1 gene encoding dolichol-phosphate- mannose synthase is able to complement a glycosylation-defective mammalian cell line[J]. Molecular and Cellular Biology, 1990, 10(9): 4612-4622.
    [8] ALBUQUERQUE-WENDT A, HÜTTE HJ, BUETTNER FFR, ROUTIER FH, BAKKER H. Membrane topological model of glycosyltransferases of the GT-C superfamily[J]. International Journal of Molecular Sciences, 2019, 20(19): 4842.
    [9] MOHANTY S, CHAUDHARY BP, ZOETEWEY D. Structural insight into the mechanism of N-linked glycosylation by oligosaccharyltransferase[J]. Biomolecules, 2020, 10(4): 624.
    [10] CHINO H, MIZUSHIMA N. ER-phagy: quality control and turnover of endoplasmic reticulum[J]. Trends in Cell Biology, 2020, 30(5): 384-398.
    [11] RUDDOCK LW, MOLINARI M. N-glycan processing in ER quality control[J]. Journal of Cell Science, 2006, 119(21): 4373-4380.
    [12] HAMMOND C, BRAAKMAN I, HELENIUS A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(3): 913-917.
    [13] BEHRENS NH, LELOIR LF. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver[J]. Proceedings of the National Academy of Sciences of the United States of America, 1970, 66(1): 153-159.
    [14] HERSCOVICS A, BUGGE B, JEANLOZ RW. Glucosyltransferase activity in calf pancreas microsomes. Formation of dolichyl d-[14C]glucosyl phosphate and 14C-labeled lipid-linked oligosaccharides from UDP-d-[14C]glucose[J]. Journal of Biological Chemistry, 1977, 252(7): 2271-2277.
    [15] PALAMARCZYK G, DRAKE R, HALEY B, LENNARZ WJ. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(7): 2666-2670.
    [16] JANKOWSKI W, CHOJNACKI T. Formation of lipid-linked sugars in rat liver and brain microsomes[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1972, 260(1): 93-97.
    [17] WEDGWOOD JF, STROMINGER JL, WARREN CD. Transfer of sugars from nucleoside diphosphosugar compounds to endogenous and synthetic dolichyl phosphate in human lymphocytes[J]. Journal of Biological Chemistry, 1974, 249(19): 6316-6324.
    [18] HEESEN S, LEHLE L, WEISSMANN A, AEBI M. Isolation of the alg5 locus encoding the UDP-glucose: dolichyl-phosphate glucosyltransferase from Saccharomyces cerevisiae[J]. European Journal of Biochemistry, 1994, 224(1): 71-79.
    [19] GRABIŃSKA KA, GHOSH SK, GUAN ZQ, CUI JK, RAETZ CRH, ROBBINS PW, SAMUELSON J. Dolichyl-phosphate-glucose is used to make O-glycans on glycoproteins of Trichomonas vaginalis[J]. Eukaryotic Cell, 2008, 7(8): 1344-1351.
    [20] BLOCH JS, PESCIULLESI G, BOILEVIN J, NOSOL K, IROBALIEVA RN, DARBRE T, AEBI M, KOSSIAKOFF AA, REYMOND JL, LOCHER KP. Structure and mechanism of the ER-based glucosyltransferase Alg6[J]. Nature, 2020, 579(7799): 443-447.
    [21] LI ST, LU TT, XU XX, DING Y, LI ZJ, KITAJIMA T, DEAN N, WANG N, GAO XD. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans[J]. Nature Communications, 2019, 10: 1813.
    [22] CHEN KH, YANG JS, HWANG CY, FANG JM. Phospholipid-induced aggregation and anthracene excimer formation[J]. Organic Letters, 2008, 10(20): 4401-4404.
    [23] GUERNELLI S, LAGANÀ MF, MEZZINA E, FERRONI F, SIANI G, SPINELLI D. Supramolecular complex formation: a study of the interactions between β-cyclodextrin and some different classes of organic compounds by ESI-MS, surface tension measurements, and UV/vis and 1H NMR spectroscopy[J]. European Journal of Organic Chemistry, 2003, 2003(24): 4765-4776.
    [24] WU ZL, LI AY, FAN BH, XUE F, ADACHI C, OUYANG JY. Phenanthrene-functionalized 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole- 1,4-diones as donor molecules for solution-processed organic photovoltaic cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(8): 2516-2523.
    [25] WILSON IB, WEBBERLEY MC, REVERS L, FLITSCH SL. Dolichol is not a necessary moiety for lipid-linked oligosaccharide substrates of the mannosyltransferases involved in in vitro N-linked- oligosaccharide assembly[J]. The Biochemical Journal, 1995, 310(Pt 3): 909-916.
    [26] 李盛陶, 王宁, 高晓冬. 植烷醇磷酸甘露糖的酶法合成及应用[J]. 食品与生物技术学报, 2020, 39(3): 49-55. LI ST, WANG N, GAO XD. Enzymatic synthesis and application of phytanol-phosphate mannose[J]. Journal of Food Science and Biotechnology, 2020, 39(3): 49-55(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

栗瑞杰,胡芸,尚尔菲,高晓冬,王宁. 多萜醇磷酸β-葡萄糖基转移酶的活性和底物特异性分析[J]. 生物工程学报, 2024, 40(6): 1833-1844

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 录用日期:2023-12-03
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-06-25
文章二维码
您是第5990904位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司