酿酒酵母稳定整合位点鉴定及其在橘烯生物合成中的应用
作者:
基金项目:

国家自然科学基金(22178131, 21878104);国家重点研发计划(2018YFA0901504)


Stable integration sites in Saccharomyces cerevisiae: identification and application in the biosynthesis of valencene
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    橘烯(valencene)是一种带有柑橘香气的高值倍半萜类化合物,被广泛应用于食品、化妆品等行业,以及工业合成圆柚酮。本研究在酿酒酵母基因组中鉴定到了16个位于基因间区(intergenic region, IGR)的基因组位点,利用CRISPR-Cas9技术,将Ypet表达盒整合到不同的基因组位点,整合成功率高达87.50%,不同插入位点之间的表达差异达1.91倍。研究显示,位置效应在基因表达中相对稳定,基本不受启动子和报告基因变更的影响。之后筛选高效表达的元件组合PTDH3-TPRC1,在优选的整合位点迭代整合来自阿拉斯加黄扁柏(Callitropsis nootkatensis)橘烯合成酶(VSm),橘烯产量提升至254.67 mg/L。过表达多个拷贝的关键基因tHMG1-ERG20,橘烯的产量提高了93.49%。所得工程菌株L-13在3 L发酵罐中进行2阶段补料分批发酵能够生产橘烯9 530.18 mg/L,相较出发菌株提高了近100倍,展现了筛选出的基因组位点在橘烯生产优化过程中的潜力。

    Abstract:

    Valencene, a high-value sesquiterpene with a citrus aroma, is widely employed in the food and cosmetic fields and the industrial synthesis of nootkatone. In this study, 16 genomic loci in the intergenic regions (IGRs) of Saccharomyces cerevisiae were identified. A Ypet expression cassette was successfully integrated into various genomic loci by CRISPR-Cas9, with an impressive integration success rate of 87.50% and exhibiting expression variations of up to 1.91-fold depending on the insertion site. The study demonstrates that the positional effect exhibits relative stability in gene expression, and is essentially unaffected by changes in promoters and reporter genes. Furthermore, a high-expression element combination, PTDH3-TPRC1, was selected. The iterative integration of the valencene synthase gene VSm from Callitropsis nootkatensis at the selected loci increased the valencene yield to 254.67 mg/L. Overexpression of key genes tHMG1-ERG20 with multiple copies increased the valencene yield by 93.49%. The engineered strain L-13 achieved the valencene yield of 9 530.18 mg/L by two-stage fed-batch fermentation in a 3 L fermenter. This yield represents a nearly 100-fold increase compared with that of the starting strain, highlighting the significant potential of the screened genomic loci in optimizing valencene production.

    参考文献
    [1] WITHERS ST, KEASLING JD. Biosynthesis and engineering of isoprenoid small molecules[J]. Applied Microbiology and Biotechnology, 2007, 73(5): 980-990.
    [2] LIU T, LI W, CHEN HF, WU T, ZHU CY, ZHUO M, LI S. Systematic optimization of HPO-CPR to boost (+)-nootkatone synthesis in engineered Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2022, 70(49): 15548-15559.
    [3] OUYANG XD, CHA YP, LI W, ZHU CY, ZHU MZ, LI S, ZHUO M, HUANG SB, LI JJ. Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes[J]. RSC Advances, 2019, 9(52): 30171-30181.
    [4] DIETSCH M, BEHLE A, WESTHOFF P, AXMANN IM. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene[J]. Metabolic Engineering Communications, 2021, 13: e00178.
    [5] FROHWITTER J, HEIDER SAE, PETERS-WENDISCH P, BEEKWILDER J, WENDISCH VF. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum[J]. Journal of Biotechnology, 2014, 191: 205-213.
    [6] BEEKWILDER J, van HOUWELINGEN A, CANKAR K, van DIJK ADJ, de JONG RM, STOOPEN G, BOUWMEESTER H, ACHKAR J, SONKE T, BOSCH D. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene[J]. Plant Biotechnology Journal, 2014, 12(2): 174-182.
    [7] SHI SB, LIANG YY, ZHANG MM, ANG EL, ZHAO HM. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016, 33: 19-27.
    [8] BRÖKER JN, MÜLLER B, van DEENEN N, PRÜFER D, SCHULZE GRONOVER C. Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6923-6934.
    [9] 孙玲, 王均华, 蒋玮, 李由然, 张梁, 丁重阳, 顾正华, 石贵阳, 徐沙. 高效合成番茄红素酿酒酵母菌株的构建[J]. 生物工程学报, 2020, 36(7): 1334-1345. SUN L, WANG JH, JIANG W, LI YR, ZHANG L, DING CY, GU ZH, SHI GY, XU S. Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1334-1345(in Chinese).
    [10] ROUX I, CHOOI YH. Cre/lox-mediated chromosomal integration of biosynthetic gene clusters for heterologous expression in Aspergillus nidulans[J]. ACS Synthetic Biology, 2022, 11(3): 1186-1195.
    [11] LIU TF, GOU YW, ZHANG B, GAO R, DONG C, QI MM, JIANG LH, DING XW, LI C, LIAN JZ. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast[J]. Biotechnology and Bioengineering, 2022, 119(5): 1314-1326.
    [12] WANG ZK, GONG JS, QIN JF, LI H, LU ZM, SHI JS, XU ZH. Improving the intensity of integrated expression for microbial production[J]. ACS Synthetic Biology, 2021, 10(11): 2796-2807.
    [13] MIKKELSEN MD, BURON LD, SALOMONSEN B, OLSEN CE, HANSEN BG, MORTENSEN UH, HALKIER BA. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform[J]. Metabolic Engineering, 2012, 14(2): 104-111.
    [14] CHA YP, LI W, WU T, YOU X, CHEN HF, ZHU CY, ZHUO M, CHEN B, LI S. Probing the synergistic ratio of P450/CPR to improve (+)-nootkatone production in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2022, 70(3): 815-825.
    [15] LABUN K, MONTAGUE TG, KRAUSE M, TORRES CLEUREN YN, TJELDNES H, VALEN E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing[J]. Nucleic Acids Research, 2019, 47(W1): W171-W174.
    [16] AJIKUMAR PK, XIAO WH, TYO KEJ, WANG Y, SIMEON F, LEONARD E, MUCHA O, PHON TH, PFEIFER B, STEPHANOPOULOS G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74.
    [17] SERRA E, HIDALGO-BASTIDA L.A, VERRAN J, WILLIAMS D, MALIC S. Antifungal activity of commercial essential oils and biocides against Candida albicans[J]. Pathogens, 2018, 7(1): 15.
    [18] van de LAAR T, VISSER C, HOLSTER M, LÓPEZ CG, KREUNING D, SIERKSTRA L, LINDNER N, VERRIPS T. Increased heterologous protein production by Saccharomyces cerevisiae growing on ethanol as sole carbon source[J]. Biotechnology and Bioengineering, 2007, 96(3): 483-494.
    [19] WU XL, LI BZ, ZHANG WZ, SONG K, QI H, DAI JB, YUAN YJ. Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2017, 10: 189.
    [20] KONG SJ, YU W, GAO N, ZHAI XX, ZHOU YJ. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae[J]. FEMS Microbiology Letters, 2022, 369(1): fnac081.
    [21] CHEN YR, ZENG SY, HU RK, WANG XX, HUANG WL, LIU JF, WANG LY, LIU GF, CAO Y, ZHANG Y. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish[J]. PLoS One, 2017, 12(8): e0182528.
    [22] REIDER APEL A, D’ESPAUX L, WEHRS M, SACHS D, LI RA, TONG GJ, GARBER M, NNADI O, ZHUANG W, HILLSON NJ, KEASLING JD, MUKHOPADHYAY A. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2017, 45(1): 496-508.
    [23] BABAEI M, SARTORI L, KARPUKHIN A, ABASHKIN D, MATROSOVA E, BORODINA I. Expansion of EasyClone-MarkerFree toolkit for Saccharomyces cerevisiae genome with new integration sites[J]. FEMS Yeast Research, 2021, 21(4): foab027.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈东莹,朱晁谊,陈和锋,周靖涛,李爽. 酿酒酵母稳定整合位点鉴定及其在橘烯生物合成中的应用[J]. 生物工程学报, 2024, 40(6): 1924-1934

复制
分享
文章指标
  • 点击次数:456
  • 下载次数: 1067
  • HTML阅读次数: 556
  • 引用次数: 0
历史
  • 收稿日期:2023-11-17
  • 录用日期:2024-02-23
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-06-25
文章二维码
您是第6019668位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司