中国地表水中抗生素的分布特征与生态风险
作者:
基金项目:

国家自然科学基金(22176090,21806075);泉州市科技计划项目(2020CT002);南京环保科技项目(202309)


Occurrence and environmental risks of antibiotics in surface water of China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    抗生素作为一类新污染物,在地表水中频繁检出,其引发的抗性基因风险已引起人们的广泛关注。然而,关于我国地表水中抗生素的污染现状及其对水生生物的生态风险尚未见详细论述。本研究建立了2018–2022年间我国地表水抗生素污染的数据集,包括124份文献报道的128种抗生素的3 368个浓度数据。分析结果表明,抗生素的检出浓度主要在ng/L–μg/L级别,最高可达26 μg/L。其中磺胺甲噁唑等磺胺类抗生素、环丙沙星等喹诺酮类抗生素报道次数多且检出浓度高。以磺胺甲噁唑、环丙沙星、罗红霉素和四环素为例,不同年份的抗生素污染程度并无显著区别,但夏季的污染程度相比春、秋季更低,且呈现明显不同的空间分布特征。基于水生生物生态风险评估模型和风险加权频率计算,我们提出了包括克拉霉素、红霉素、磺胺甲噁唑、氧氟沙星和氧四环素等地表水中优先管控抗生素的名单。最后,本文指出了我国地表水中抗生素的环境分布及生态风险的研究中的不足,并提出了建议和展望。

    Abstract:

    Antibiotics as emerging pollutants are frequently detected in surface water, raising concerns about the associated risk of antibiotic resistance genes (ARGs). Despite the widespread apprehension, there are still research gaps in the occurrence of antibiotic pollution in surface water and the associated ecological risks to aquatic organisms in China. Here, we established a dataset of antibiotic pollution in surface water in China during 2018–2022, which encompassed 3 368 concentration values of 128 antibiotics reported in 124 articles. Our analysis showed that antibiotic concentrations were predominantly in the ng/L–μg/L range, reaching up to 26 μg/L. Notably, sulfonamides (e.g., sulfamethoxazole) and quinolones (e.g., ciprofloxacin) were frequently reported at high concentrations. The pollution degree of antibiotics represented by sulfamethoxazole, ciprofloxacin, roxithromycin, and tetracycline exhibited no significant variation across different years but was lower in summer than that in spring and autumn. Additionally, distinct spatial distribution characteristics of the pollution were observed. According to calculation results of the aquatic ecological risk assessment model and the weighted frequency, we proposed a list of priority antibiotics including clarithromycin, erythromycin, sulfamethoxazole, ofloxacin, and oxytetracycline in surface water. Last but not least, this study points out the deficiencies in current research on the occurrence and ecological risks of antibiotics in surface water of China and provides viable screening strategies and monitoring recommendations in this context.

    参考文献
    [1] QIAO M, YING GG, SINGER AC, ZHU YG. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172.
    [2] KLEIN EY, van BOECKEL TP, MARTINEZ EM, PANT S, GANDRA S, LEVIN SA, GOOSSENS H, LAXMINARAYAN R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3463-E3470.
    [3] ZHANG QQ, YING GG, PAN CG, LIU YS, ZHAO JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    [4] LI S, LIU Y, WU Y, HU JR, ZHANG YQ, SUN Q, SUN WL, GENG JG, LIU XY, JIA DT, YOU XQ, QI DQ, TANG MR, LYU YT, KONG FG, CAI LL, AI YF, WANG YC, NI JR. Antibiotics in global rivers[J]. National Science Open, 2022, 1(2): 20220029.
    [5] WILKINSON JL, BOXALL ABA, KOLPIN DW, LEUNG KMY, LAI RWS, GALBÁN-MALAGÓN C, ADELL AD, MONDON J, METIAN M, MARCHANT RA, BOUZAS-MONROY A, CUNI-SANCHEZ A, COORS A, CARRIQUIRIBORDE P, ROJO M, GORDON C, CARA M, MOERMOND M, LUARTE T, PETROSYAN V,et al. Pharmaceutical pollution of the world’s rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113947119.
    [6] HERNÁNDEZ F, CALıSTO-ULLOA N, GÓMEZ- FUENTES C, GÓMEZ M, FERRER J, GONZÁLEZ- ROCHA G, BELLO-TOLEDO H, BOTERO-COY AM, BOıX C, IBÁÑEZ M, MONTORY M. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic[J]. Journal of Hazardous Materials, 2019, 363: 447-456.
    [7] JOAKIM LARSSON DG, FLACH CF. Antibiotic resistance in the environment[J]. Nature Reviews Microbiology, 2022, 20: 257-269.
    [8] ABBOTT A. Medics braced for fresh superbug[J]. Nature, 2005, 436: 758.
    [9] United Nations Environment Programme, Frontiers 2017 emerging issues of environmental concern[EB/OL]. [2024-02-27]. https://www.unep.org/resources/frontiers-2017-emerging-issues-environmental-concern.
    [10] COLLABORATORS AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
    [11] 中华人民共和国国务院办公厅. 国务院办公厅关于印发新污染物治理行动方案的通知[J]. 中华人民共和国国务院公报, 2022(16): 34-39. General Office of the State Council of the People’s Republic of China. Notice of the General Office of the State Council on Issuing the Action Plan for the Control of New Pollutants[J]. Bulletin of the State Council of the People’s Republic of China, 2022(16): 34-39(in Chinese).
    [12] HUANG FY, AN ZY, MORAN MJ, LIU F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019)[J]. Journal of Hazardous Materials, 2020, 399: 122813.
    [13] 何玉洁, 周凯萍, 饶怡璇, 季荣. 土壤中抗生素的环境风险及污染土壤的生物修复技术[J]. 生物工程学报, 2021, 37(10): 3487-3504. HE YJ, ZHOU KP, RAO YX, JI R. Environmental risks of antibiotics in soil and the related bioremediation technologies[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3487-3504(in Chinese).
    [14] LI S, SHI WZ, LIU W, LI HM, ZHANG W, HU JR, KE YC, SUN WL, NI JR. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005−2016)[J]. The Science of the Total Environment, 2018, 615: 906-917.
    [15] van BOECKEL TP, GANDRA S, ASHOK A, CAUDRON Q, GRENFELL BT, LEVIN SA, LAXMINARAYAN R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data[J]. The Lancet Infectious Diseases, 2014, 14(8): 742-750.
    [16] TRAN NH, CHEN HJ, REINHARD M, MAO FJ, GIN KYH. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes[J]. Water Research, 2016, 104: 461-472.
    [17] JU HY, LIU L, LIU XM, WU Y, LI L, GIN KYH, ZHANG GX, ZHANG JJ. A comprehensive study of the source, occurrence, and spatio-seasonal dynamics of 12 target antibiotics and their potential risks in a cold semi-arid catchment[J]. Water Research, 2023, 229: 119433.
    [18] CARVALHO IT, SANTOS L. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016, 94: 736-757.
    [19] LIU X, STEELE JC, MENG XZ. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environmental Pollution, 2017, 223: 161-169.
    [20] HANAMOTO S, YAMAMOTO-IKEMOTO R, TANAKA H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese Catchments[J]. The Science of the Total Environment, 2023, 867: 161514.
    [21] SHAFI M, JAN R, GANI KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka[J]. Chemosphere, 2023, 341: 139976.
    [22] THIEBAULT T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: a critical review[J]. The Science of the Total Environment, 2020, 715: 136916.
    [23] LI FF, BAO YY, CHEN LJ, SU ZG, TANG YS, WEN DH. Screening of priority antibiotics in Chinese seawater based on the persistence, bioaccumulation, toxicity and resistance[J]. Environment International, 2023, 179: 108140.
    [24] AKHTER S, BHAT MA, AHMED S, AHMAD SIDDIQI W, AHMAD S, SHRIMAL H. Profiling of antibiotic residues in surface water of River Yamuna stretch passing through Delhi, India[J]. Water, 2023, 15(3): 527.
    [25] TONG L, QIN LT, GUAN C, WILSON ME, LI XJ, CHENG DD, MA J, LIU H, GONG FJ. Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China[J]. Environmental Science and Pollution Research, 2020, 27(25): 31995-32005.
    [26] NGUYEN PY, CARVALHO G, REIS MAM, OEHMEN A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes[J]. Water Research, 2021, 188: 116446.
    [27] WANG K, SU ZX, REGUYAL F, BIAN RX, LI WH, YU HF, SUN YJ, ZHUANG Y, SHANG W. Seasonal occurrence of multiple classes of antibiotics in East China Rivers and their association with suspended particulate matter[J]. The Science of the Total Environment, 2022, 853: 158579.
    [28] GUO XC, SONG RR, LU SY, LIU XH, CHEN JM, WAN ZF, BI B. Multi-media occurrence of antibiotics and antibiotic resistance genes in East Dongting Lake[J]. Frontiers in Environmental Science, 2022, 10: 866332.
    [29] LUO YY, LIU C, WANG Y, YANG YC, MISHRA S. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: a review[J]. Marine Pollution Bulletin, 2023, 193: 115189.
    [30] LIU RM, WANG YN, WANG LF, WANG YF, PENG XY, CAO LP, LIU Y. Spatio-temporal distribution and source identification of antibiotics in suspended matter in the Fen River Basin[J]. Chemosphere, 2023, 345: 140497.
    [31] LI SJ, JU HY, ZHANG JQ, CHEN P, JI MC, REN JH, ZHAO SY. Occurrence and distribution of selected antibiotics in the surface waters and ecological risk assessment based on the theory of natural disaster[J]. Environmental Science and Pollution Research, 2019, 26(27): 28384-28400.
    [32] ZHENG CL, RUAN T, CHAN FKS, BAO P, LI G, XU YY. Statistical approach reveals tidal effect on the antibiotics and environmental relationship with the case study of Yongjiang Estuary, China[J]. Marine Environmental Research, 2021, 164: 105244.
    [33] TANG JP, ZHANG JH, SU LH, JIA YY, YANG Y. Bioavailability and trophic magnification of antibiotics in aquatic food webs of Pearl River, China: influence of physicochemical characteristics and biotransformation[J]. The Science of the Total Environment, 2022, 820: 153285.
    [34] ZHANG LL, QIN S, SHEN LN, LI SJ, CUI JS, LIU Y. Bioaccumulation, trophic transfer, and human health risk of quinolones antibiotics in the benthic food web from a macrophyte-dominated shallow lake, north China[J]. The Science of the Total Environment, 2020, 712: 136557.
    [35] HAN ZM, FENG HD, WANG C, WANG XG, YANG M, ZHANG Y. Mitigating antibiotic resistance emissions in the pharmaceutical industry: global governance and available techniques[J]. China CDC Weekly, 2023, 5(46): 1038-1044.
    [36] ZHANG Y, WALSH TR, WANG Y, SHEN JZ, YANG M. Minimizing risks of antimicrobial resistance development in the environment from a public one health perspective[J]. China CDC Weekly, 2022, 4(49): 1105-1109.
    [37] WANG YQ, LU SY, LIU XH, CHEN J, HAN MZ, WANG Z, GUO W. Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: the relationship with antibiotics, environmental factors, and microbial communities[J]. Ecotoxicology and Environmental Safety, 2021, 221: 112427.
    [38] 王娅南, 彭洁, 黄合田, 谭红, 张爱华, 杨鸿波, 郭峰, 何锦林. 贵阳市城市河流典型抗生素的分布特征[J]. 环境化学, 2018, 37(9): 2039-2048. WANG YN, PENG J, HUANG HT, TAN H, ZHANG AH, YANG HB, GUO F, HE JL. Distribution characteristics of typical antibiotics in Urban Rivers of Guiyang City[J]. Environmental Chemistry, 2018, 37(9): 2039-2048(in Chinese).
    [39] van der GRINTEN E, PIKKEMAAT MG, van den BRANDHOF EJ, STROOMBERG GJ, KRAAK MHS. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics[J]. Chemosphere, 2010, 80(1): 1-6.
    [40] FERRARI B, MONS R, VOLLAT B, FRAYSSE B, PAXÉUS N, GIUDICE RL, POLLIO A, GARRIC J. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?[J]. Environmental Toxicology and Chemistry, 2004, 23(5): 1344-1354.
    [41] ISIDORI M, LAVORGNA M, NARDELLI A, PASCARELLA L, PARRELLA A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms[J]. The Science of the Total Environment, 2005, 346(1/2/3): 87-98.
    [42] YANG LH, YING GG, SU HC, STAUBER JL, ADAMS MS, BINET MT. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208.
    [43] de LIGUORO M, FIORETTO B, POLTRONIERI C, GALLINA G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim[J]. Chemosphere, 2009, 75(11): 1519-1524.
    [44] LÜTZHØFT HC H, HALLING-SØRENSEN B, JØRGENSEN SE. Algal toxicity of antibacterial agents applied in Danish fish farming[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6.
    [45] EGUCHI K, NAGASE H, OZAWA M, ENDOH YS, GOTO K, HIRATA K, MIYAMOTO K, YOSHIMURA H. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 2004, 57(11): 1733-1738.
    [46] WOLLENBERGER L, HALLING-SØRENSEN B, KUSK KO. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere, 2000, 40(7): 723-730.
    [47] BIAŁK-BIELIŃSKA A, STOLTE S, ARNING J, UEBERS U, BÖSCHEN A, STEPNOWSKI P, MATZKE M. Ecotoxicity evaluation of selected sulfonamides[J]. Chemosphere, 2011, 85(6): 928-933.
    [48] HALLING-SØRENSEN B, LÜTZHØFT HCH, ANDERSEN HR, INGERSLEV F. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin[J]. Journal of Antimicrobial Chemotherapy, 2000, 46(suppl_1): 53-58.
    [49] KERGARAVAT SV, HERNÁNDEZ SR, GAGNETEN AM. Second-, third- and fourth-generation quinolones: ecotoxicity effects on Daphnia and Ceriodaphnia species[J]. Chemosphere, 2021, 262: 127823.
    [50] ANDO T, NAGASE H, EGUCHI K, HIROOKA T, NAKAMURA T, MIYAMOTO K, HIRATA K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents[J]. Environmental Toxicology and Chemistry, 2007, 26(4): 601-606.
    [51] ROBINSON AA, BELDEN JB, LYDY MJ. Toxicity of fluoroquinolone antibiotics to aquatic organisms[J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430.
    [52] EBERT I, BACHMANN J, KÜHNEN U, KÜSTER A, KUSSATZ C, MALETZKI D, SCHLÜTER C. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms[J]. Environmental Toxicology and Chemistry, 2011, 30(12): 2786-2792.
    [53] CHOI K, KIM Y, JUNG J, KIM MH, KIM CS, KIM NH, PARK J. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea[J]. Environmental Toxicology and Chemistry, 2008, 27(3): 711-719.
    [54] GONZÁLEZ-PLEITER M, GONZALO S, RODEA- PALOMARES I, LEGANÉS F, ROSAL R, BOLTES K, MARCO E, FERNÁNDEZ-PIÑAS F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064.
    [55] HALLING-SØRENSEN B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000, 40(7): 731-739.
    [56] PARK S, CHOI K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems[J]. Ecotoxicology, 2008, 17(6): 526-538.
    [57] MAGDALENO A, CARUSSO S, MORETTON J. Toxicity and genotoxicity of three antimicrobials commonly used in veterinary medicine[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3): 315-320.
    [58] JI K, KIM S, HAN S, SEO J, LEE S, PARK Y, CHOI K, KHO YL, KIM PG, PARK J, CHOI K. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe?[J]. Ecotoxicology, 2012, 21(7): 2031-2050.
    [59] CHEN MY, TENG WK, ZHAO L, HU CX, ZHOU YK, HAN BP, SONG LR, SHU WS. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation[J]. The ISME Journal, 2021, 15(1): 211-227.
    [60] NIE XP, LIU BY, YU HJ, LIU WQ, YANG YF. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172: 23-32.
    [61] YANG WW, TANG ZP, ZHOU FQ, ZHANG WH, SONG LR. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum[J]. Environmental Toxicology and Pharmacology, 2013, 35(2): 320-324.
    [62] ZHANG YM, XIU WJ, YAN M, GUO XR, NI ZH, GU JH, TANG T, LIU FS. Adverse effects of sulfamethoxazole on locomotor behavior and lipid metabolism by inhibiting acetylcholinesterase and lipase in Daphnia magna[J]. The Science of the Total Environment, 2023, 892: 164631.
    [63] ZHANG SQ, LI P, ZHAO XL, HE SW, XING SY, CAO ZH, ZHANG HQ, LI ZH. Hepatotoxicity in carp (Cyprinus carpio) exposed to environmental levels of norfloxacin (NOR): some latest evidences from transcriptomics analysis, biochemical parameters and histopathological changes[J]. Chemosphere, 2021, 283: 131210.
    [64] LIU JY, WEI TZ, WU X, ZHONG HB, QIU WH, ZHENG Y. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae[J]. The Science of the Total Environment, 2020, 703: 134724.
    [65] GOROKHOVA E, RIVETTI C, FURUHAGEN S, EDLUND A, EK K, BREITHOLTZ M. Bacteria-mediated effects of antibiotics on Daphnia nutrition[J]. Environmental Science & Technology, 2015, 49(9): 5779-5787.
    [66] QIU WH, LIU T, LIU XJ, CHEN HH, LUO SS, CHEN QQ, MAGNUSON JT, ZHENG CM, XU EG, SCHLENK D. Enrofloxacin induces intestinal microbiota-mediated immunosuppression in zebrafish[J]. Environmental Science & Technology, 2022, 56(12): 8428-8437.
    [67] QIAN MR, WANG JM, JI XF, YANG H, TANG B, ZHANG H, YANG GL, BAO ZW, JIN YX. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio)[J]. Ecotoxicology and Environmental Safety, 2021, 221: 112464.
    [68] YANG Y, ZHANG XR, JIANG JY, HAN JR, LI WX, LI XY, YEE LEUNG KM, SNYDER SA, ALVAREZ PJJ. Which micropollutants in water environments deserve more attention globally?[J]. Environmental Science & Technology, 2022, 56(1): 13-29.
    [69] SCHAR D, KLEIN EY, LAXMINARAYAN R, GILBERT M, van BOECKEL TP. Global trends in antimicrobial use in aquaculture[J]. Scientific Reports, 2020, 10: 21878.
    [70] HUANG FY, CHEN LP, ZHANG C, LIU F, LI H. Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity[J]. The Science of the Total Environment, 2022, 806(Pt 2): 150636.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

屈森虎,汪斌,何玉洁,朱瑞亭,田云升,季荣,庞伟,钱玮燕,吴厚荣. 中国地表水中抗生素的分布特征与生态风险[J]. 生物工程学报, 2024, 40(7): 2120-2135

复制
分享
文章指标
  • 点击次数:605
  • 下载次数: 660
  • HTML阅读次数: 567
  • 引用次数: 0
历史
  • 收稿日期:2023-12-18
  • 在线发布日期: 2024-07-08
  • 出版日期: 2024-07-25
文章二维码
您是第5990806位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司