Abstract:In recent years, precision medicine has demonstrated wide applications in cancer therapy, and the focus of precision medicine lies in accurately predicting the responses of different patients to drug treatment. We propose a model for predicting cancer drug sensitivity based on genomic feature distribution alignment and drug structure information. This model initially aligns the genomic features from cell lines with those from patients and removes noise from gene expression data. Subsequently, it integrates drug structure features and employs multi-task learning to predict the drug sensitivity of patients. The experimental results on the genomics of drug sensitivity in cancer (GDSC) dataset indicates that this method achieved a reduced mean square error of 0.905 2, an increased correlation coefficient of 0.875 4, and an enhanced accuracy rate of 0.836 0 which significantly outperformed the recently published methods. On the cancer genome atlas (TCGA) dataset, this method demonstrates an improved average recall rate of 0.571 4 and an increased F1-score of 0.658 0 in predicting drug sensitivity, exhibiting excellent generalization performance. The result demonstrates the potential of this method to assist in the selection of clinical treatment plans in the future.