乙醇酸高产菌株的筛选及发酵
作者:
基金项目:

国家重点研发计划(2018YFA0901400);国家自然科学基金(22008088, 21877053)


Screening and fermentation of high-yield glycolic acid strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    乙醇酸是一种重要的化工产品,广泛应用于化妆品、清洁剂及纺织品等各个领域。目前,微生物法生产乙醇酸存在菌株遗传稳定性差、产率低、成本高的缺点,而全细胞催化生产乙醇酸大多需要添加价格相对昂贵的山梨醇作为碳源,限制了其工业化生产。为了开发一种适用于工业化应用的乙醇酸生产方法,本研究以乙二醇为底物进行全细胞催化筛选乙醇酸生产菌株,获得了一株产乙醇酸的红酵母。随后对该菌株进行了紫外诱变,并通过高通量筛选得到了正突变株RMGly-20,摇瓶优化后该菌株的乙醇酸产量为17.8 g/L,比原始菌株提高了10.1倍。以葡萄糖为碳源,经5 L发酵罐补料分批培养,菌株RMGly-20可生产61.1 g/L乙醇酸,初步实现了可利用廉价碳源且遗传稳定的乙醇酸菌株的选育,为生物法合成乙醇酸提供了新宿主,有利于进一步推进乙醇酸的工业化生产。

    Abstract:

    Glycolic acid is an important chemical product widely used in various fields, including cosmetics, detergents, textiles, and more. Currently, microbial production of glycolic acid has disadvantages such as poor genetic stability, low yield, and high cost. Additionally, whole-cell catalytic production of glycolic acid typically requires the addition of relatively expensive sorbitol as a carbon source, which limits its industrial production. To develop an industrially applicable method for glycolic acid production, this study used ethylene glycol as a substrate to screen the glycolic acid-producing strains through whole-cell catalysis, obtaining a Rhodotorula sp. capable of producing glycolic acid. The strain was then subjected to UV mutagenesis and high throughput screening, and the positive mutant strain RMGly-20 was obtained. After optimization in shake flasks, the glycolic acid titer of RMGly-20 reached 17.8 g/L, a 10.1-fold increase compared to the original strain. Using glucose as the carbon source and employing a fed-batch culture in a 5 L fermenter, strain RMGly-20 produced 61.1 g/L of the glycolic acid. This achievement marks the preliminary breeding of a genetically stable glycolic acid-producing strain using a cheap carbon source, providing a new host for the biosynthesis of glycolic acid and promoting further progress toward industrial production.

    参考文献
    [1] ZHAN T, CHEN Q, ZHANG C, BI CH, ZHANG XL. Constructing a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli[J]. ACS Synthetic Biology, 2020, 9(9): 2600-2609.
    [2] LI W, CHEN J, LIU CX, YUAN QP, LI ZJ. Microbial production of glycolate from acetate by metabolically engineered Escherichia coli[J]. Journal of Biotechnology, 2019, 291: 41-45.
    [3] CABULONG RB, BAÑARES AB, NISOLA GM, LEE WK, CHUNG WJ. Enhanced glycolic acid yield through xylose and cellobiose utilization by metabolically engineered Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2021, 44(6): 1081-1091.
    [4] 商宽祥, 张大洲, 卢文新, 张宗飞, 谢鸿洲, 张国建. 乙醇酸市场前景及技术进展分析[J]. 化肥设计, 2022, 60(4): 5-7, 35. SHANG KX, ZHANG DZ, LU WX, ZHANG ZF, XIE HZ, ZHANG GJ. Analysis of glycolic acid market prospects and technology progress[J]. Chemical Fertilizer Design, 2022, 60(4): 5-7, 35 (in Chinese).
    [5] KIM K, FUJITA M, DAIMON H, FUJIE K. Change of monochloroacetic acid to biodegradable organic acids by hydrothermal reaction[J]. Journal of Hazardous Materials, 2004, 108(1/2): 133-139.
    [6] 王保伟, 宋华, 许根慧. Cu-Ag/SiO2催化剂上草酸二甲酯加氢反应的研究[C]. 第十届全国青年催化学术会议, 呼和浩特, 2005. WANG BW, SONG H, XU GH. Study on hydrogenation of dimethyl oxalate over Cu-Ag/SiO2 catalyst[C]. The 10th National Youth Congress on Catalysis, Hohhot, 2005 (in Chinese).
    [7] KOIVISTOINEN OM, KUIVANEN J, BARTH D, TURKIA H, PITKÄNEN JP, PENTTILÄ M, RICHARD P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis[J]. Microbial Cell Factories, 2013, 12: 82.
    [8] KANG NK, KIM M, BAEK K, CHANG YK, ORT DR, JIN YS. Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation[J]. Chemical Engineering Journal, 2022, 433: 133636.
    [9] LEE SS, PARK J, HEO YB, WOO HM. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: current limitation and future perspective of the CRISPR-Cas systems[J]. Enzyme and Microbial Technology, 2020, 132: 109395.
    [10] YU Y, SHAO MY, LI D, FAN FY, XU HT, LU FP, BI CH, ZHU XN, ZHANG XL. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli[J]. Metabolic Engineering, 2020, 61: 152-159.
    [11] LIN Y, CHEN WW, DING B, GUO M, LIANG M, PANG H, WEI YT, HUANG RB, DU LQ. Highly efficient bioconversion of icariin to icaritin by whole-cell catalysis[J]. Microbial Cell Factories, 2023, 22(1): 64.
    [12] KATAOKA M, SASAKI M, HIDALGO AR, NAKANO M, SHIMIZU S. Glycolic acid production using ethylene glycol-oxidizing microorganisms[J]. Bioscience, Biotechnology, and Biochemistry, 2001, 65(10): 2265-2270.
    [13] CARNIEL A, SANTOS AG, JÚNIOR LSC, CASTRO AM, COELHO MAZ. Biotransformation of ethylene glycol to glycolic acid by Yarrowia lipolytica: a route for poly(ethylene terephthalate) (PET) upcycling[J]. Biotechnology Journal, 2023, 18(6): e2200521.
    [14] PANDIT AV, HARRISON E, MAHADEVAN R. Engineering Escherichia coli for the utilization of ethylene glycol[J]. Microbial Cell Factories, 2021, 20(1): 22.
    [15] ZHANG H, SHI LL, MAO XL, LIN JP, WEI DZ. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003[J]. Journal of Biotechnology, 2016, 237: 18-24.
    [16] DENG Y, MA N, ZHU KJ, MAO Y, WEI XT, ZHAO YY. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli[J]. Metabolic Engineering, 2018, 46: 28-34.
    [17] 胡成杰. 乙醇酸生物法高效合成研究[D]. 无锡: 江南大学硕士学位论文, 2023. HU CJ. Efficient bio-synthesis of glycolic acid[D]. Wuxi: Master’s Thesis of Jiangnan University, 2023 (in Chinese).
    [18] XU SM, ZHANG LP, ZHOU SH, DENG Y. Biosensor-based multigene pathway optimization for enhancing the production of glycolate[J]. Applied and Environmental Microbiology, 2021, 87(12): e0011321.
    [19] ZHU KJ, LI GH, WEI R, MAO Y, ZHAO YY, HE AY, BAI ZH, DENG Y. Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli[J]. Journal of Biological Engineering, 2019, 13: 30.
    [20] DING NN, YUAN ZQ, ZHANG XJ, CHEN J, ZHOU SH, DENG Y. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor[J]. Nucleic Acids Research, 2020, 48(18): 10602-10613.
    [21] HUA X, ZHOU X, XU Y. Improving techno- economics of bioproduct glycolic acid by successive recycled-cell catalysis of ethylene glycol with Gluconobacter oxydans[J]. Bioprocess and Biosystems Engineering, 2018, 41(10): 1555-1559.
    [22] ALJAMMAS HA, YAZJI S, AZIZIEH A. Enhancement of protease production from Rhizomucor miehei by mutagenesis with ethyl methanesulfonate, ultraviolet, and microwaves: a preliminary study[J]. Bioresource Technology Reports, 2022, 20: 101287.
    [23] FANG K, MA J, WANG XY, XU ZT, ZHANG ZY, LI PW, WANG RM, WANG JQ, SUN CY, DONG ZY. Flow-cytometric cell sorting coupled with UV mutagenesis for improving pectin lyase expression[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1251342.
    [24] LUO ZS, ZENG WZ, DU GC, LIU S, FANG F, ZHOU JW, CHEN J. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis[J]. Bioprocess and Biosystems Engineering, 2017, 40(5): 693-701.
    [25] TAO RK, ZHAO YZ, CHU HY, WANG AX, ZHU JH, CHEN XJ, ZOU YJ, SHI M, LIU RM, SU N, DU JL, ZHOU HM, ZHU LY, QIAN XH, LIU HY, LOSCALZO J, YANG Y. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism[J]. Nature Methods, 2017, 14: 720-728.
    [26] 周媛媛. 来源于Bacillus xiaoxiensis STB08的β-CGT酶在大肠杆菌中的分泌表达及发酵优化[D]. 无锡: 江南大学硕士学位论文, 2022. ZHOU YY. Secretion expression in Escherichia coli and fermentation optimization of β-CGTase from Bacillus xiaoxiensis STB08[D]. Wuxi: Master’s Thesis of Jiangnan University, 2022 (in Chinese).
    [27] 张红, 林金连, 胡定行, 刘贵友, 孙磊. 大肠杆菌高密度发酵表达4-羟基苯乙酸酯3-羟化酶及咖啡酸的高效生物合成[J]. 生物工程学报, 2022, 38(9): 3466-3477. ZHANG H, LIN JL, HU DH, LIU GY, SUN L. High-density fermentation of Escherichia coli to express 4-hydroxyphenylacetate 3-hydroxylase and efficient biosynthesis of caffeic acid[J]. Chinese Journal of Biotechnology, 2022, 38(9): 3466-3477 (in Chinese).
    [28] HE Q, LIU YH, LIU DH, GUO MM. Integration of transcriptomic and proteomic approaches unveils the molecular mechanism of membrane disintegration in Escherichia coli O157:H7 with ultrasonic treatment[J]. The Science of the Total Environment, 2021, 791: 148366.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲍青青,杨光,陈菲菲,李国辉,邓禹. 乙醇酸高产菌株的筛选及发酵[J]. 生物工程学报, 2024, 40(8): 2418-2431

复制
分享
文章指标
  • 点击次数:368
  • 下载次数: 626
  • HTML阅读次数: 666
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5900053位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司