双酶级联催化L-色氨酸合成靛蓝
作者:
基金项目:

国家重点研发计划(2021YFC2102700);轻工业技术与工程国家一级学科计划(QJGC20230101)


A dual-enzyme cascade for production of indigo from L-tryptophan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    靛蓝(indigo)作为一种水溶性非偶氮类着色剂,广泛应用于纺织、食品、制药等工业领域。目前靛蓝主要采用化学法合成,存在环境污染、安全隐患等问题,亟须寻找更安全、更绿色的合成方法。本研究利用大肠杆菌(Escherichia coli)来源的色氨酸酶(tryptophanase, EcTnaA)和噬甲基菌(Methylophaga aminisulfidivorans)来源的黄素依赖性单加氧酶(flavin-dependent monooxygenase, MaFMO)构建双酶级联路径,以L-色氨酸为底物合成靛蓝,导入E. coli中获得重组菌株EM-IND01。通过对限速酶MaFMO进行蛋白质工程改造,获得了有益突变体MaFMOD197E,比酶活和kcat/Km比野生型分别提高了2.36倍和1.34倍;将其引入菌株EM-IND01中获得重组菌株EM-IND02,并进行发酵条件优化,在5 L发酵罐中靛蓝产量为(1 288.59±7.50) mg/L,转化率为0.86 mg/mg L-色氨酸,生产强度为26.85 mg/(L·h)。本研究通过蛋白质工程改造,获得MaFMO活性提高的突变体,为靛蓝的工业化生产奠定了基础。

    Abstract:

    Indigo, as a water-soluble non-azo colorant, is widely used in textile, food, pharmaceutical and other industrial fields. Currently, indigo is primarily synthesized by chemical methods, which causes environmental pollution, potential safety hazards, and other issues. Therefore, there is an urgent need to find a safer and greener synthetic method. In this study, a dual-enzyme cascade pathway was constructed with the tryptophan synthase (tryptophanase, EcTnaA) from Escherichia coli and flavin-dependent monooxygenase (flavin-dependent monooxygenase, MaFMO) from Methylophaga aminisulfidivorans to synthesize indigo with L-tryptophan as substrate. A recombinant strain EM-IND01 was obtained. The beneficial mutant MaFMOD197E was obtained by protein engineering of the rate-limiting enzyme MaFMO. MaFMOD197E showed the specific activity and kcat/Km value 2.36 times and 1.34 times higher than that of the wild type, respectively. Furthermore, MaFMOD197E was introduced into the strain EM-IND01 to construct the strain EM-IND02. After the fermentation conditions were optimized, the strain achieved the indigo titer of (1 288.59±7.50) mg/L, the yield of 0.86 mg/mg L-tryptophan, and the productivity of 26.85 mg/(L·h) in a 5 L fermenter. Protein engineering was used to obtain mutants with increased MaFMO activity in this study, which laid a foundation for industrial production of indigo.

    参考文献
    [1] VÁZQUEZ-ORTEGA F, LAGUNES I, TRIGOS Á. Cosmetic dyes as potential photosensitizers of singlet oxygen generation[J]. Dyes and Pigments, 2020, 176: 108248.
    [2] SADAUSKAS M, STATKEVIČIŪTĖ R, VAITEKŪNAS J, PETKEVIČIUS V, ČASAITĖ V, GASPARAVIČIŪTĖ R, MEŠKYS R. Enzymatic synthesis of novel water-soluble indigoid compounds[J]. Dyes and Pigments, 2020, 173: 107882.
    [3] SAIKHAO L, SETTHAYANOND J, KARPKIRD T, BECHTOLD T, SUWANRUJI P. Green reducing agents for indigo dyeing on cotton fabrics[J]. Journal of Cleaner Production, 2018, 197: 106-113.
    [4] COSTA AFDS, de AMORIM JDP, ALMEIDA FCG, de LIMA ID, de PAIVA SC, ROCHA MAV, VINHAS GM, SARUBBO LA. Dyeing of bacterial cellulose films using plant-based natural dyes[J]. International Journal of Biological Macromolecules, 2019, 121: 580-587.
    [5] 徐枫, 姜利利, 王永华, 王祥荣. 靛蓝染料染色技术研究进展[J]. 印染助剂, 2023, 40(5): 1-6. XU F, JIANG LL, WANG YH, WANG XR. Research progress of indigo dyeing technology[J]. Textile Auxiliaries, 2023, 40(5): 1-6 (in Chinese).
    [6] PULIT-PROCIAK J, CHWASTOWSKI J, KUCHARSKI A, BANACH M. Functionalization of textiles with silver and zinc oxide nanoparticles[J]. Applied Surface Science, 2016, 385: 543-553.
    [7] HEO BG, PARK YJ, PARK YS, BAE JH, CHO JY, PARK K, JASTRZEBSKI Z, GORINSTEIN S. Anticancer and antioxidant effects of extracts from different parts of indigo plant[J]. Industrial Crops and Products, 2014, 56: 9-16.
    [8] YOU WC, HSIEH CC, HUANG JT. Effect of extracts from indigowood root (Isatis indigotica Fort.) on immune responses in radiation-induced mucositis[J]. Journal of Alternative and Complementary Medicine, 2009, 15(7): 771-778.
    [9] MARYAN AS, MONTAZER M, HARIFI T. Synthesis of nano silver on cellulosic denim fabric producing yellow colored garment with antibacterial properties[J]. Carbohydrate Polymers, 2015, 115: 568-574.
    [10] EISENBRAND G, HIPPE F, JAKOBS S, MUEHLBEYER S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine[J]. Journal of Cancer Research and Clinical Oncology, 2004, 130(11): 627-635.
    [11] LIN YK, LEU YL, YANG SH, CHEN HW, WANG CT, PANG JH S. Anti-psoriatic effects of indigo naturalis on the proliferation and differentiation of keratinocytes with indirubin as the active component[J]. Journal of Dermatological Science, 2009, 54(3): 168-174.
    [12] HOESSEL R, LECLERC S, ENDICOTT JA, NOBEL MEM, LAWRIE A, TUNNAH P, LEOST M, DAMIENS E, MARIE D, MARKO D, NIEDERBERGER E, TANG WC, EISENBRAND G, MEIJER L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases[J]. Nature Cell Biology, 1999, 1(1): 60-67.
    [13] KAMELAMELA N, ZALESNE M, MORIMOTO J, ROBBAT A, WOLFE BE. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese[J]. Food Microbiology, 2018, 76: 543-552.
    [14] PINHEIRO D, PINEIRO M, PINA J, BRANDÃO P, GALVÃO AM, SEIXAS de MELO JS. Tryptanthrin from indigo: synthesis, excited state deactivation routes and efficient singlet oxygen sensitization[J]. Dyes and Pigments, 2020, 175: 108125.
    [15] KOLACZKOWSKI MA, LIU Y. Functional organic semiconductors based on bay-annulated indigo (BAI)[J]. Chemical Record, 2019, 19(6): 1062-1077.
    [16] KLIMOVICH IV, LESHANSKAYA LI, TROYANOV SI, ANOKHIN DV, NOVIKOV DV, PIRYAZEV AA, IVANOV DA, DREMOVA NN, TROSHIN PA. Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics[J]. Journal of Materials Chemistry C, 2014, 2(36): 7621-7631.
    [17] NGAI JHL, LEUNG LM, SO SK, LEE HKH. Organic soluble indigoids derived from 3-hydroxybenzaldehyde for N-type organic field-effect transistor (OFET) applications[J]. Organic Electronics, 2016, 32: 258-266.
    [18] LOPES HFS, TU ZH, SUMI H, YUMOTO I. Analysis of bacterial flora of indigo fermentation fluids utilizing composted indigo leaves (sukumo) and indigo extracted from plants (Ryukyu-ai and Indian indigo)[J]. Journal of Bioscience and Bioengineering, 2021, 132(3): 279-286.
    [19] RAVELOMBOLA W, TROSTLE C, CASON J, ALE S, MANLEY A, PHAM H. Current status of the genetic and agronomic of industrial indigo Indigofera sp.[J]. Euphytica, 2023, 219(12): 128.
    [20] CHANDEL N, SINGH BB, DUREJA C, YANG YH, BHATIA SK. Indigo production goes green: a review on opportunities and challenges of fermentative production[J]. World Journal of Microbiology and Biotechnology, 2024, 40(2): 62.
    [21] 李蓉蓉, 马文浩, 肖莹. 靛蓝生物合成酶的研究进展[J]. 生物资源, 2023, 45(4): 328-340. LI RR, MA WH, XIAO Y. Research advances in enzymes involved in indigo biosynthesis[J]. Biotic Resources, 2023, 45(4): 328-340 (in Chinese).
    [22] FABARA AN, FRAAIJE MW. An overview of microbial indigo-forming enzymes[J]. Applied Microbiology and Biotechnology, 2020, 104(3): 925-933.
    [23] ZHANG XW, QU YY,e cell biocatalysts harboring P450cam mutants[J]. Biochemical Engineering Journal, 2011, 53(2): 229-233.
    [41] LI G, YOUNG KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan[J]. Microbiology, 2013, 159(Pt 2): 402-410.richia coli and its application in an NADPH-dependent indigo production system[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(3): 247-253.
    [25] CHEN L, XU JK, LI LZ, GAO SQ, WEN GB, LIN YW. Design and engineering of neuroglobin to catalyze the synthesis of indigo and derivatives for textile dyeing[J]. Molecular Systems Design & Engineering, 2022, 7(3): 239-247.
    [26] LONČAR N, van BEEK HL, FRAAIJE MW. Structure-based redesign of a self-sufficient flavin-containing monooxygenase towards indigo production[J]. International Journal of Molecular Sciences, 2019, 20(24): 6148.
    [27] MERCADAL JPR, ISAAC P, SIÑERIZ F, FERRERO MA. Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain[J]. Journal of Basic Microbiology, 2010, 50(3): 290-293.
    [28] LI YQ, LIN YW, WANG F, WANG JH, SHOJI O, XU JK. Construction of biocatalysts using the P450 scaffold for the synthesis of indigo from indole[J]. International Journal of Molecular Sciences, 2023, 24(3): 2395.
    [29] KONG FH, CHEN J, QIN XQ, LIU CF, JIANG YP, MA L, XU HF, LI SY, CONG ZQ. Evolving a P450BM3 peroxygenase for the production of indigoid dyes from indoles[J]. ChemCatChem, 2022, 14: e202201151.
    [30] 李妍清. 基于细胞色素P450构建吲哚合成靛蓝的生物催化剂[D]. 上海: 上海海洋大学硕士学位论文, 2023. LI YQ. Construction of biocatalysts using the P450 scaffold for the synthesis of indigo from indole[D]. Shanghai: Master’s Thesis of Shanghai Ocean University, 2023 (in Chinese).
    [31] ULLRICH R, PORAJ-KOBIELSKA M, HEROLD- MAJUMDAR OM, VIND J, HOFRICHTER M. Synthesis of indigo-dyes from indole derivatives by unspecific peroxygenases and their application for in-situ dyeing[J]. Catalysts, 2021, 11: 1495.
    [32] FABARA AN, FRAAIJE MW. Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme[J]. Enzyme and Microbial Technology, 2020, 142: 109692.
    [33] 丁爽, 陈修来, 高聪, 宋伟, 吴静, 魏婉清, 刘佳, 刘立明. 模块化工程改造大肠杆菌生产l-色氨酸[J]. 生物工程学报, 2023, 39(6): 2359-2374. DING S, CHEN XL, GAO C, SONG W, WU J, WEI WQ, LIU J, LIU LM. Modular engineering of Escherichia coli for high-level production of l-tryptophan[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2359-2374 (in Chinese).
    [34] LEE J, KIM J, SONG JE, SONG WS, KIM EJ, KIM YG, JEONG HJ, KIM HR, CHOI KY, KIM BG. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli[J]. Nature Chemical Biology, 2021, 17(1): 104-112.
    [35] ROTILIO L, SWOBODA A, EBNER K, RINNOFNER C, GLIEDER A, KROUTIL W, MATTEVI A. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst[J]. ACS Catalysis, 2021, 11(18): 11511-11525.
    [36] LIU C, XU JK, GAO SQ, HE B, WEI CW, WANG XJ, WANG ZH, LIN YW. Green and efficient biosynthesis of indigo from indole by engineered myoglobins[J]. RSC Advances, 2018, 8(58): 33325-33330.
    [37] DAI CX, MA Q, LI Y, ZHOU DD, YANG BY, QU YY. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production[J]. Bioprocess and Biosystems Engineering, 2019, 42(12): 1963-1971.
    [38] YANG ZY, WANG RS, CHENG BY, RUAN V, YANG PJ, LIANG CH, SHEN CR. Key residues identified by random mutagenesis enhanced indole hydroxylation efficiency of the flavin-containing monooxygenase from Corynebacterium glutamicum[J]. Biochemical Engineering Journal, 2023, 199: 109064.
    [39] YIN HF, CHEN HP, YAN M, LI ZK, YANG RD, LI YJ, WANG YF, GUAN JY, MAO HL, WANG Y, ZHANG YY. Efficient bioproduction of indigo and indirubin by optimizing a novel terpenoid cyclase XiaI in Escherichia coli[J]. ACS Omega, 2021, 6(31): 20569-20576.
    [40] MOURI T, KAMIYA N, GOTO M. New strategy to enhance catalytic performance of Escherichia coli whol
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗诗琪,魏婉清,吴静,宋伟,胡贵鹏,刘立明. 双酶级联催化L-色氨酸合成靛蓝[J]. 生物工程学报, 2024, 40(8): 2444-2456

复制
分享
文章指标
  • 点击次数:276
  • 下载次数: 744
  • HTML阅读次数: 443
  • 引用次数: 0
历史
  • 收稿日期:2024-02-01
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5900089位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司