代谢工程改造大肠杆菌底物利用途径促进L-赖氨酸生产
作者:
基金项目:

江苏省农业科技创新基金[CX(22)1012, CX(23)2005];江苏省自然科学基金(BK20200614)


Metabolic engineering of the substrate utilization pathway in Escherichia coli increases L-lysine production
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    L-赖氨酸作为一种必需氨基酸,广泛应用于饲料、食品、医药等领域。针对大肠杆菌(Escherichia coli)发酵生产L-赖氨酸存在底物利用效率差、糖酸转化率低等问题,本研究通过敲除全局调控因子基因mlc,异源表达来源于麦芽糖磷酸转移酶基因malAP,提高菌株对二糖、三糖的利用效率,得到菌株E. coli XC3,其L-赖氨酸产量、产率和生产强度分别提高到160.00 g/L、63.78%和4.44 g/(L·h);在此基础上,在菌株E. coli XC3中过表达谷氨酸脱氢酶基因gdhA、来源于枯草芽孢杆菌(Bacillus subtilis)硝酸盐还原酶基因BsnasBC和来源于E. coli的亚硝酸盐还原酶基因EcnirBD,构建硝酸盐同化路径,获得工程菌E. coli XC4,其L-赖氨酸产量、产率和生产强度分别提高到188.00 g/L、69.44%和5.22 g/(L·h),进一步通过优化残糖浓度和碳氮比,在5 L发酵罐中将L-赖氨酸产量、产率和生产强度分别提高到204.00 g/L、72.32%、5.67 g/(L·h),比出发菌株XC1分别提高了40.69%、20.03%、40.69%。本研究通过强化菌株的底物利用途径,构建了L-赖氨酸高产菌株,为L-赖氨酸的工业化生产奠定了坚实基础。

    Abstract:

    L-lysine is an essential amino acid with broad applications in the animal feed, human food, and pharmaceutical industries. The fermentation production of L-lysine by Escherichia coli has limitations such as poor substrate utilization efficiency and low saccharide conversion rates. We deleted the global regulatory factor gene mlc and introduced heterologous genes, including the maltose phosphotransferase genes (malAP) from Bacillus subtilis, to enhance the use efficiency of disaccharides and trisaccharides. The engineered strain E. coli XC3 demonstrated improved L-lysine production, yield, and productivity, which reached 160.00 g/L, 63.78%, and 4.44 g/(L‧h), respectively. Furthermore, we overexpressed the glutamate dehydrogenase gene (gdhA) and assimilated nitrate reductase genes (BsnasBC) from B. subtilis, along with nitrite reductase genes (EcnirBD) from E. coli, in strain E. coli XC3. This allowed the construction of E. coli XC4 with a nitrate assimilation pathway. The L-lysine production, yield, and productivity of E. coli XC4 were elevated to 188.00 g/L, 69.44%, and 5.22 g/(L‧h), respectively. After optimization of the residual sugar concentration and carbon to nitrogen ratio, the L-lysine production, yield, and productivity were increased to 204.00 g/L, 72.32%, and 5.67 g/(L‧h), respectively, in a 5 L fermenter. These values represented the increases of 40.69%, 20.03%, and 40.69%, respectively, compared with those of the starting strain XC1. By engineering the substrate utilization pathway, we successfully constructed a high-yield L-lysine producing strain, laying a solid foundation for the industrial production of L-lysine.

    参考文献
    [1] WENDISCH VF. Metabolic engineering advances and prospects for amino acid production[J]. Metabolic Engineering, 2020, 58: 17-34.
    [2] DO CARMO FÉLIX FK, LETTI LAJ, de MELO PEREIRA GV, BONFIM PGB, SOCCOL VT, SOCCOL CR. l-lysine production improvement: a review of the state of the art and patent landscape focusing on strain deavelopment and fermentation technologies[J]. Critical Reviews in Biotechnology, 2019, 39(8): 1031-1055.
    [3] YING HX, HE X, LI Y, CHEN KQ, OUYANG PK. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2014, 172(8): 3835-3843.
    [4] YE C, LUO QL, GUO L, GAO C, XU N, ZHANG L, LIU LM, CHEN XL. Improving lysine production through construction of an Escherichia coli enzyme-constrained model[J]. Biotechnology and Bioengineering, 2020, 117(11): 3533-3544.
    [5] LIU J, OU Y, XU JZ, RAO ZM, ZHANG WG. l-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum[J]. Bioresource Technology, 2023, 387: 129701.
    [6] WU WJ, ZHANG Y, LIU DH, CHEN Z. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum[J]. Metabolic Engineering, 2019, 52: 77-86.
    [7] KAJSIKOVA M, KAJSIK M, DRAHOVSKA H, BUKOVSKA G. Complete genome sequence of the industrial l-lysine production strain [Brevibacterium] flavum CCM 251[J]. Biologia, 2022, 77(5): 1423-1428.
    [8] XU JZ, HAN M, REN XD, ZHANG WG. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli[J]. Biochemical Engineering Journal, 2016, 114: 79-86.
    [9] PIAO XY, WANG L, LIN BX, CHEN H, LIU WF, TAO Y. Metabolic engineering of Escherichia coli for production of l-aspartate and its derivative β-alanine with high stoichiometric yield[J]. Metabolic Engineering, 2019, 54: 244-254.
    [10] 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. GUO L, GAO C, LIU YD, CHEN XL, LIU LM. Advances in bioproduction of feed amino acid by Escherichia coli[J]. Synthetic Biology Journal, 2021, 2(6): 964-981 (in Chinese).
    [11] KIKUCHI Y, KOJIMA H, TANAKA T. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli[J]. FEMS Microbiology Letters, 1999, 173(1): 211-215.
    [12] D’ESTE M, ALVARADO-MORALES M, ANGELIDAKI I. Amino acids production focusing on fermentation technologies-a review[J]. Biotechnology Advances, 2018, 36(1): 14-25.
    [13] KIM SY, NAM TW, SHIN D, KOO BM, SEOK YJ, RYU S. Purification of Mlc and analysis of its effects on the pts expression in Escherichia coli[J]. The Journal of Biological Chemistry, 1999, 274(36): 25398-25402.
    [14] ROCHA S, MARZIALETTI T, KOPP M, CEA M. Reaction mechanism of the microwave-assisted synthesis of 5-hydroxymethylfurfural from sucrose in sugar beet molasses[J]. Catalysts, 2021, 11(12): 1458.
    [15] LENGSFELD C, SCHÖNERT S, DIPPEL R, BOOS W. Glucose- and glucokinase-controlled mal gene expression in Escherichia coli[J]. Journal of Bacteriology, 2009, 191(3): 701-712.
    [16] YAMAMOTO H, SERIZAWA M, THOMPSON J, SEKIGUCHI J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre[J]. Journal of Bacteriology, 2001, 183(17): 5110-5121.
    [17] MIYAKOSHI M. Multilayered regulation of amino acid metabolism in Escherichia coli[J]. Current Opinion in Microbiology, 2024, 77: 102406.
    [18] YANG ZM, HAN YL, MA Y, CHEN QH, ZHAN YH, LU W, CAI L, HOU MS, CHEN SF, YAN YL, LIN M. Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes[J]. Scientific Reports, 2018, 8: 10928.
    [19] KUMAR R, SHIMIZU K. Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, gdhD mutants under different carbon and nitrogen limitations in the continuous culture[J]. Microbial Cell Factories, 2010, 9: 8.
    [20] BIRKE RR, CAUSON T, TURETSCHEK R, EMERSTORFER F, KARNER T, DOMIG KJ, HANN S. Requirements for accurate quantification of nitrate and nitrite in molasses: insights from an interlaboratory comparison[J]. Food Control, 2022, 134: 108712.
    [21] SHI WW, LU W, LIU QL, ZHI YE, ZHOU P. The identification of the nitrate assimilation related genes in the novel Bacillus megaterium NCT-2 accounts for its ability to use nitrate as its only source of nitrogen[J]. Functional & Integrative Genomics, 2014, 14(1): 219-227.
    [22] CHEN X, LIU CM, ZHU BL, WEI WX, SHENG R. The contribution of nitrate dissimilation to nitrate consumption in narG- and napA-containing nitrate reducers with various oxygen and nitrate supplies[J]. Microbiology Spectrum, 2022, 10(6): e0069522.
    [23] XU JZ, YU HB, HAN M, LIU LM, ZHANG WG. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(7): 937-949.
    [24] ABE K, KURODA A, TAKESHITA R. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock[J]. Applied Microbiology and Biotechnology, 2017, 101(5): 2057-2066.
    [25] GUO J, MAN ZW, RAO ZM, XU MJ, YANG TW, ZHANG X, XU ZH. Improvement of the ammonia assimilation for enhancing l-arginine production of Corynebacterium crenatum[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3): 443-451.
    [26] XU MJ, LI J, SHU QF, TANG M, ZHANG X, YANG TW, XU ZH, RAO ZM. Enhancement of l-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(8): 1155-1166.
    [27] LUQUE-ALMAGRO VM, GATES AJ, MORENO- VIVIÁN C, FERGUSON SJ, RICHARDSON DJ, ROLDÁN MD. Bacterial nitrate assimilation: gene distribution and regulation[J]. Biochemical Society Transactions, 2011, 39(6): 1838-1843.
    [28] SPARACINO-WATKINS C, STOLZ JF, BASU P. Nitrate and periplasmic nitrate reductases[J]. Chemical Society Reviews, 2014, 43(2): 676-706.
    [29] SGOBBA E, STUMPF AK, VORTMANN M, JAGMANN N, KREHENBRINK M, DIRKS- HOFMEISTER ME, MOERSCHBACHER B, PHILIPP B, WENDISCH VF. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose[J]. Bioresource Technology, 2018, 260: 302-310.
    [30] WANG XW, LI QG, SUN CM, CAI Z, ZHENG XM, GUO X, NI XM, ZHOU WJ, GUO YM, ZHENG P, CHEN N, SUN JB, LI Y, MA YH. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli[J]. Microbial Cell Factories, 2019, 18(1): 106.
    [31] 刘佳, 郭亮, 罗秋玲, 陈修来, 高聪, 宋伟, 刘立明. 细胞寿命在大肠杆菌细胞工厂构建中的应用[J]. 生物工程学报, 2021, 37(4): 1277-1286. LIU J, GUO L, LUO QL, CHEN XL, GAO C, SONG W, LIU LM. Application of chronological lifespan in the construction cell factories[J]. Chinese Journal of Biotechnology, 2021, 37(4): 1277-1286 (in Chinese).
    [32] WANG Y, LI QG, ZHENG P, GUO YM, WANG LX, ZHANG TC, SUN JB, MA YH. Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method[J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43(9): 1227-1286.
    [33] 丁爽, 陈修来, 高聪, 宋伟, 吴静, 魏婉清, 刘佳, 刘立明. 模块化工程改造大肠杆菌生产l-色氨酸[J]. 生物工程学报, 2023, 39(6): 2359-2374. DING S, CHEN XL, GAO C, SONG W, WU J, WEI WQ, LIU J, LIU LM. Modular engineering of Escherichia coli for high-level production of l-tryptophan[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2359-2374 (in Chinese).
    [34] SÉVIN DC, SAUER U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli[J]. Nature Chemical Biology, 2014, 10: 266-272.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许雪晨,王浩淼,陈修来,吴静,高聪,宋伟,魏婉清,刘佳,柳亚迪,刘立明. 代谢工程改造大肠杆菌底物利用途径促进L-赖氨酸生产[J]. 生物工程学报, 2024, 40(8): 2513-2527

复制
分享
文章指标
  • 点击次数:350
  • 下载次数: 651
  • HTML阅读次数: 439
  • 引用次数: 0
历史
  • 收稿日期:2024-01-17
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5990852位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司