基于工程化盐单胞菌TDZI-08一锅法合成衣康酸
作者:
基金项目:

国家重点研发计划(2018YFA0900200)


One-pot synthesis of itaconic acid by engineered Halomonas bluephagenesis TDZI-08
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    衣康酸(itaconic acid, IA)是12种高附加值平台化合物之一,广泛应用于涂料、黏合剂、塑料、树脂和生物燃料等领域。本研究基于前期构建的工程化盐单胞菌TDZI-08,通过排查阻碍因素、优化碳源、氮源、诱导剂添加时间和表面活性剂添加量等,建立了一锅法催化柠檬酸合成衣康酸工艺。在5 L发酵罐中利用TDZI-08进行开放式不灭菌一锅法合成,最高产生了40.50 g/L衣康酸,催化阶段得率为0.68 g衣康酸/g柠檬酸,总得率为0.42 g衣康酸/g (柠檬酸+葡萄糖酸)。本研究探索出的一锅法合成体系工艺简单且无须灭菌和无菌操作,表明盐单胞菌具有较好的衣康酸工业化生产潜力。

    Abstract:

    Itaconic acid (IA) is one of the twelve high value-added platform compounds applied in various fields including coatings, adhesives, plastics, resins, and biofuels. In this study, we established a one-pot catalytic synthesis system for IA from citric acid based on the engineered salt-tolerant bacterial strain Halomonas bluephagenesis TDZI-08 after investigating factors that hindered the process and optimizing the carbon source, nitrogen source, inducer addition time, and surfactant dosage. The open, non-sterile, one-pot synthesis with TDZI-08 in a 5 L fermenter achieved the highest IA titer of 40.50 g/L, with a catalytic yield of 0.68 g IA/g citric acid during the catalytic stage and a total yield of 0.42 g IA/g (citric acid+gluconic acid). The one-pot synthesis system established in this study is simple and does not need sterilization or aseptic operations. The findings indicate the potential of H. bluephagenesis for industrial production of IA.

    参考文献
    [1] OKABE M, LIES D, KANAMASA S, PARK EY. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus[J]. Applied Microbiology and Biotechnology, 2009, 84(4): 597-606.
    [2] KUENZ A, KRULL S. Biotechnological production of itaconic acid—things you have to know[J]. Applied Microbiology and Biotechnology, 2018, 102(9): 3901-3914.
    [3] PFEIFER VF, VOJNOVICH C, HEGER EN. Itaconic acid by fermentation with Aspergillus terreus[J]. Industrial & Engineering Chemistry, 1952, 44(12): 2975-2980.
    [4] KRULL S, HEVEKERL A, KUENZ A, PRÜßE U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers[J]. Applied Microbiology and Biotechnology, 2017, 101(10): 4063-4072.
    [5] HOSSEINPOUR TEHRANI H, BECKER J, BATOR I, SAUR K, MEYER S, RODRIGUES LÓIA AC, BLANK LM, WIERCKX N. Integrated strain- and process design enable production of 220 g/L itaconic acid with Ustilago maydis[J]. Biotechnology for Biofuels, 2019, 12(1): 263.
    [6] HOSSAIN AH, LI A, BRICKWEDDE A, WILMS L, CASPERS M, OVERKAMP K, PUNT PJ. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger[J]. Microbial Cell Factories, 2016, 15(1): 130.
    [7] van der STRAAT L, VERNOOIJ M, LAMMERS M, van den BERG W, SCHONEWILLE T, CORDEWENER J, van der MEER I, KOOPS A, de GRAAFF LH. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger[J]. Microbial Cell Factories, 2014, 13: 11.
    [8] HARDER BJ, BETTENBROCK K, KLAMT S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(1): 156-164.
    [9] HARDER BJ, BETTENBROCK K, KLAMT S. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli[J]. Metabolic Engineering, 2016, 38: 29-37.
    [10] MERKEL M, KIEFER D, SCHMOLLACK M, BLOMBACH B, LILGE L, HENKEL M, HAUSMANN R. Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control[J]. Bioresource Technology, 2022, 351: 126994.
    [11] OTTEN A, BROCKER M, BOTT M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate[J]. Metabolic Engineering, 2015, 30: 156-165.
    [12] RONG LX, MIAO L, WANG SH, WANG YP, LIU SQ, LU ZH, ZHAO BX, ZHANG CY, XIAO DG, PUSHPANATHAN K, WONG A, YU AQ. Engineering Yarrowia lipolytica to produce itaconic acid from waste cooking oil[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 888869.
    [13] ZHAO C, CUI ZY, ZHAO XY, ZHANG JX, ZHANG LH, TIAN YJ, QI QS, LIU JJ. Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 2181-2192.
    [14] de CARVALHO CC. Whole cell biocatalysts: essential workers from nature to the industry[J]. Microbial Biotechnology, 2017, 10(2): 250-263.
    [15] YANG ZW, GAO X, XIE H, WANG FQ, REN YH, WEI DZ. Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli[J]. Biotechnology and Bioengineering, 2017, 114(2): 457-462.
    [16] KIM J, SEO HM, BHATIA SK, SONG HS, KIM JH, JEON JM, CHOI KY, KIM W, YOON JJ, KIM YG, YANG YH. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli[J]. Scientific Reports, 2017, 7: 39768.
    [17] FENG J, LI CQ, HE H, XU S, WANG X, CHEN KQ. Construction of cell factory through combinatorial metabolic engineering for efficient production of itaconic acid[J]. Microbial Cell Factories, 2022, 21(1): 275.
    [18] HSIANG CC, DIANKRISTANTI PA, TAN SI, KE YC, CHEN YC, EFFENDI SSW, NG IS. Tailoring key enzymes for renewable and high-level itaconic acid production using genetic Escherichia coli via whole-cell bioconversion[J]. Enzyme and Microbial Technology, 2022, 160: 110087.
    [19] DIANKRISTANTI PA, NG IS. Microbial itaconic acid bioproduction towards sustainable development: insights, challenges, and prospects[J]. Bioresource Technology, 2023, 384: 129280.
    [20] ZHANG J, JIN B, HONG KQ, LV Y, WANG ZW, CHEN T. Cell catalysis of citrate to itaconate by engineered Halomonas bluephagenesis[J]. ACS Synthetic Biology, 2021, 10(11): 3017-3027.
    [21] TAN D, WU Q, CHEN JC, CHEN GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014, 26: 34-47.
    [22] 王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展[J]. 微生物学通报, 2015, 42(3): 550-558. WANG WW, TANG HZ, XU P. Salt-tolerance related genes in halophilic bacteria and archaea[J]. Microbiology China, 2015, 42(3): 550-558 (in Chinese).
    [23] 陈国强, 薛源生, 谭丹, 吴琼. 一株盐单胞菌及其应用: CN102120973A[P]. 2011-07-13. CHEN G, XUE YS, TAN D, WU Q. Halomonas strain and application thereof: CN102120973A[P]. 2011-07-13 (in Chinese).
    [24] OLAOFE OA, BURTON SG, COWAN DA, HARRISON STL. Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli[J]. Biochemical Engineering Journal, 2010, 52(1): 19-24.
    [25] CHEN JP, GONG JS, SU C, LI H, XU ZH, SHI JS. Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies[J]. Metabolic Engineering, 2023, 78: 99-114.
    [26] RENNIG M, MUNDHADA H, WORDOFA GG, GERNGROSS D, WULFF T, WORBERG A, NIELSEN AT, NØRHOLM MHH. Industrializing a bacterial strain for l-serine production through translation initiation optimization[J]. ACS Synthetic Biology, 2019, 8(10): 2347-2358.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张静,元跃,王智文,陈涛. 基于工程化盐单胞菌TDZI-08一锅法合成衣康酸[J]. 生物工程学报, 2024, 40(8): 2666-2677

复制
分享
文章指标
  • 点击次数:244
  • 下载次数: 606
  • HTML阅读次数: 329
  • 引用次数: 0
历史
  • 收稿日期:2024-01-25
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第6005455位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司