丙酸的合成生物制造
作者:
基金项目:

国家重点研发计划(2018YFA0901400);国家自然科学基金(32070026);黑龙江省省属科研院所科研业务费项目(CZKYF2023SW04)


Biomanufacturing of propionic acid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    丙酸是一种重要的C3平台化合物,在食品、药品和化工等领域应用广泛。以石油等化工产品为原料通过化学途径合成,环境污染严重且不可持续。近些年,利用微生物转化可再生资源生产丙酸受到了广泛关注。本文聚焦丙酸生物制造技术,首先综述了传统丙酸杆菌代谢工程改造和在大肠杆菌及酿酒酵母等异源宿主中重构丙酸合成途径的研究;其次重点讨论了基于合成生物学技术,通过对恶臭假单胞菌KT2440的途径设计和改造,实现其利用L-苏氨酸或生物基1,2-丙二醇为原料的高效生物催化合成高纯度丙酸的最新进展。

    Abstract:

    Propionic acid as an important C3 platform chemical has been widely used in food, pharmaceutical, and chemical fields. The chemical synthesis of propionic acid from petroleum and other chemical products has serious environmental pollution and is not sustainable. In recent years, the production of propionic acid by microbial transformation of renewable resources has received extensive attention. Focusing on the biomanufacturing of propionic acid, this paper firstly reviews the studies about the metabolic engineering of Propionibacterium and the pathway reconstruction in heterogeneous hosts such as Escherichia coli and Saccharomyces cerevisiae. Secondly, this paper reviews the recent progress in the synthesis of high-purity propionic acid from L-threonine or bio-based 1,2-propanediol by the design and modification of the pathway of Pseudomonas putida KT2440 based on synthetic biology.

    参考文献
    [1] HUANG CB, ALIMOVA Y, MYERS TM, EBERSOLE JL. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms[J]. Archives of Oral Biology, 2011, 56(7): 650-654.
    [2] RIVERO S, GIANNUZZI L, GARCÍA MA, PINOTTI A. Controlled delivery of propionic acid from chitosan films for pastry dough conservation[J]. Journal of Food Engineering, 2013, 116(2): 524-531.
    [3] SABRA W, DIETZ D, ZENG AP. Substrate-limited co-culture for efficient production of propionic acid from flour hydrolysate[J]. Applied Microbiology and Biotechnology, 2013, 97(13): 5771-5777.
    [4] SHAMS S, FOLEY KA, KAVALIERS M, MacFABE DF, OSSENKOPP KP. Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: contribution to a rodent model of autism spectrum disorder[J]. Developmental Psychobiology, 2019, 61(5): 688-699.
    [5] EŞ I, KHANEGHAH AM, HASHEMI SMB, KOUBAA M. Current advances in biological production of propionic acid[J]. Biotechnology Letters, 2017, 39(5): 635-645.
    [6] VIDRA A, NÉMETH Á. Bio-produced propionic acid: a review[J]. Periodica Polytechnica Chemical Engineering, 2017, 62(1): 57-67.
    [7] PIWOWAREK K, LIPIŃSKA E, HAĆ-SZYMAŃCZUK E, KIELISZEK M, ŚCIBISZ I. Propionibacterium spp.: source of propionic acid, vitamin B12, and other metabolites important for the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 515-538.
    [8] CORAL J, KARP SG, PORTO de SOUZA VANDENBERGHE L, PARADA JL, PANDEY A, SOCCOL CR. Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources[J]. Applied Biochemistry and Biotechnology, 2008, 151(2): 333-341.
    [9] SEELIGER S, JANSSEN PH, SCHINK B. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA[J]. FEMS Microbiology Letters, 2002, 211(1): 65-70.
    [10] EATON DC, GABELMAN A. Fed-batch and continuous fermentation of Selenomonas ruminantium for natural propionic, acetic and succinic acids[J]. Journal of Industrial Microbiology, 1995, 15(1): 32-38.
    [11] SELDER L, SABRA W, JÜRGENSEN N, LAKSHMANAN A, ZENG AP. Co-cultures with integrated in situ product removal for lactate-based propionic acid production[J]. Bioprocess and Biosystems Engineering, 2020, 43(6): 1027-1035.
    [12] ATO M, ISHII M, IGARASHI Y. Enrichment of amino acid-oxidizing, acetate-reducing bacteria[J]. Journal of Bioscience and Bioengineering, 2014, 118(2): 160-165.
    [13] GONZALEZ-GARCIA RA, McCUBBIN T, WILLE A, PLAN M, NIELSEN LK, MARCELLIN E. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase[J]. Microbial Cell Factories, 2017, 16(1): 121.
    [14] COLLOGRAI KC, Da COSTA AC, IENCZAK JL. Fermentation strategies to improve propionic acid production with propionibacterium ssp.: a review[J]. Critical Reviews in Biotechnology, 2022, 42(8): 1157-1179.
    [15] CHEN Y, WANG T, SHEN N, ZHANG F, ZENG RJ. High-purity propionate production from glycerol in mixed culture fermentation[J]. Bioresource Technology, 2016, 219: 659-667.
    [16] CHEN Y, SHEN N, WANG T, ZHANG F, ZENG RJ. Ammonium level induces high purity propionate production in mixed culture glucose fermentation[J]. RSC Advances, 2017, 7(1): 518-525.
    [17] ZHANG A, YANG ST. Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation[J]. Biotechnology and Bioengineering, 2009, 104(4): 766-773.
    [18] LIU Y, ZHANG YG, ZHANG RB, ZHANG F, ZHU JH. Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici[J]. Current Microbiology, 2011, 62(1): 152-158.
    [19] STOWERS CC, COX BM, RODRIGUEZ BA. Development of an industrializable fermentation process for propionic acid production[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(5): 837-852.
    [20] DISHISHA T, STÅHL Å, LUNDMARK S, HATTI-KAUL R. An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation[J]. Bioresource Technology, 2013, 135: 504-512.
    [21] WANG XQ, SALVACHÚA D, NOGUÉ VSI, MICHENER WE, BRATIS AD, DORGAN JR, BECKHAM GT. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici[J]. Biotechnology for Biofuels, 2017, 10: 200.
    [22] YANG H, WANG ZQ, LIN M, YANG ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: fermentation kinetics and economic analysis[J]. Bioresource Technology, 2018, 250: 1-9.
    [23] FENG XH, CHEN F, XU H, WU B, YAO J, YING HJ, OUYANG PK. Propionic acid fermentation by Propionibacterium freudenreichii CCTCC M207015 in a multi-point fibrous-bed bioreactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(9): 1077-1085.
    [24] FENG XH, CHEN F, XU H, WU B, LI H, LI S, OUYANG PK. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor[J]. Bioresource Technology, 2011, 102(10): 6141-6146.
    [25] ZHUGE X, LI JH, SHIN HD, LIU L, DU GC, CHEN J. Improved propionic acid production with metabolically engineered Propionibacterium jensenii by an oxidoreduction potential-shift control strategy[J]. Bioresource Technology, 2015, 175: 606-612.
    [26] WANG ZQ, AMMAR EM, ZHANG A, WANG LQ, LIN M, YANG ST. Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA: succinate CoA transferase[J]. Metabolic Engineering, 2015, 27: 46-56.
    [27] AMMAR EM, JIN Y, WANG ZQ, YANG ST. Metabolic engineering of Propionibacterium freudenreichii: effect of expressing phosphoenolpyruvate carboxylase on propionic acid production[J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7761-7772.
    [28] WALLENIUS J, PAHIMANOLIS N, ZOPPE J, KILPELÄINEN P, MASTER E, ILVESNIEMI H, SEPPÄLÄ J, EERIKÄINEN T, OJAMO H. Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix[J]. Bioresource Technology, 2015, 197: 1-6.
    [29] BELGRANO FDS, VERÇOZA BRF, RODRIGUES JCF, HATTI‐KAUL R, PEREIRA N. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production[J]. Journal of Applied Microbiology, 2018, 125(2): 480-489.
    [30] AMMAR EM, MARTIN J, BRABO-CATALA L, PHILIPPIDIS GP. Propionic acid production by Propionibacterium freudenreichii using sweet sorghum bagasse hydrolysate[J]. Applied Microbiology and Biotechnology, 2020, 104(22): 9619-9629.
    [31] AMMAR EM, PHILIPPIDIS GP. Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates[J]. Applied Microbiology and Biotechnology, 2021, 105(16): 6199-6213.
    [32] RAMSAY JA, ALY HASSAN MC, RAMSAY BA. Biological conversion of hemicellulose to propionic acid[J]. Enzyme and Microbial Technology, 1998, 22(4): 292-295.
    [33] WEI PL, LIN M, WANG ZQ, FU HX, YANG H, JIANG WY, YANG ST. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation[J]. Bioresource Technology, 2016, 219: 91-97.
    [34] LUNA-FLORES CH, PALFREYMAN RW, KRÖMER JO, NIELSEN LK, MARCELLIN E. Improved production of propionic acid using genome shuffling[J]. Biotechnology Journal, 2017, 12(2): 10.1002/biot. 201600120.
    [35] BAUR T, WENTZEL A, DÜRRE P. Production of propionate using metabolically engineered strains of Clostridium saccharoperbutylacetonicum[J]. Applied Microbiology and Biotechnology, 2022, 106(22): 7547-7562.
    [36] LIU L, ZHUGE X, SHIN HD, CHEN RR, LI JH, DU GC, CHEN J. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae[J]. Applied and Environmental Microbiology, 2015, 81(7): 2256-2264.
    [37] GUAN NZ, LIU L, SHIN HD, CHEN RR, ZHANG J, LI JH, DU GC, SHI ZP, CHEN J. Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application[J]. Journal of Biotechnology, 2013, 167(1): 56-63.
    [38] GUAN NZ, SHIN HD, CHEN RR, LI JH, LIU L, DU GC, CHEN J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics[J]. Scientific Reports, 2014, 4: 6951.
    [39] GUAN NZ, LI JH, SHIN HD, DU GC, CHEN J, LIU L. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii[J]. Biotechnology and Bioengineering, 2016, 113(6): 1294-1304.
    [40] NAVONE L, MCCUBBIN T, GONZALEZ-GARCIA RA, NIELSEN LK, MARCELLIN E. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production[J]. Metabolic Engineering Communications, 2018, 6: 1-12.
    [41] GONZALEZ-GARCIA RA, McCUBBIN T, TURNER MS, NIELSEN LK, MARCELLIN E. Engineering Escherichia coli for propionic acid production through the Wood-Werkman cycle[J]. Biotechnology and Bioengineering, 2020, 117(1): 167-183.
    [42] AKAWI L, SRIRANGAN K, LIU XJ, MOO-YOU济敇琠慍戬漠汃楈獏浕?晃潐爮?故湮桧慩湮捥敥摲?浮畧挠漼湩椾捅?慣捨楥摲?灣牨潩摡甠捣瑯楬潩渼?楩渾??楯?倠獨敩畧摨漭浬潥湶慥獬?灰畲瑯楤摵慣??楯???呦㈠??は孰?嵯???敥瑛慊扝漮氠楊捯??湮条楬渠敯敦爠楉湮杤???ひ?ち?????????????批爠?孡??崻?乂?啯?坥??坮????呹听?????唬????刷???????堭失???刮???刾???????????啉佃??听???楏爠敊捙琬?才楏潏猭祙湏瑕桎敇猠楍猬?潃晈?慕搠楃灈椠捐?愠捈楩摧?昭牬潥浶?汬椠杨湥楴湥?摯敬牯楧癯敵摳?慰牲潯浤慵瑣楴捩獯?甠獯楦渠杰?敯湰杩楯湮敡整牥攠摩??楥?偧獩敮略摥潲浥潤渠愼獩 ̄灅畳瑣楨摥慲??楨???呣????嬯?崾???攮琠慂扩潯汴楥捣??湯杬楯湧敹攠牡楮湤朠???づ?で???????????????戠爱?嬷??崩???刳?临?匱″????剢啲??临?九?塄?偎???呔伬唠乍?????啙刬??乏低?????倠?义??????午畁獏琠慈楍測愠打楈汉椠瑓祂?洠敍瑥牴楡换獯?晩潣爠?慮?晩潮獥獥楲汩??愠湯摦?牴敨湲敥睯慮扩汮敥?扣慡獴敡摢?牬潩畳瑭攠?普潡牢???㈠?灩爾潓灡慣湣敨摡楲潯汭?灣牥潳搠畣捥瑲楥潶湩??慡?挼漯浩瀾愠牴楯猠潰湲孯?嵵???慰瑲慯汰祩獯楮獡?呥漠摵慮祤??㈠ち????????????????扳牛?孝?ㄠ嵂????剣周??????唠削呯??????删唲丰?′??????丩?????‰匰?????????刴攵獝瀠潓湔獉敎?漠晁??楚?偁獎敇甠摍潍洬漠湒慏猠?瀬甠瑃楌摅慎??楎???吠???こ?瑅潌?楏湎挠牍敃愬猠敔摙?丠????愠湂摒??呄偂?摌敔洠慌湊搮嬠?嵸???灲灩汮楧攠搼?愾湤搼??渾瘼楩爾潥渼洯敩渾琠愼汩 ̄?椼振物漾戼楩漾汯潶杯礼??资????????????????????て???戠牰?孲??嵡?????删佰乲?????剩???卣????偝刮???佯剴??卨???副??传剐呲?????剳伬唠娲?吱???″?氨漲温椺渠朳‰愳渭搳?愱渮愼汢祲猾楛猴?潝映?杁敎湄敁獓?楍湙瘠潖氬瘠敖摁?楄湙?捎潁敔湈穁祎洠效?????扒楄潊獅祖湉瑃栠敉猬椠獊?楙湁??楎?倠獅攬甠摒潁浍潁湃慈獁?摄敒湁楎琠牋楂昬椠捂慕湃獋??椠?嬬?嵊???潒畁牍湁慎氠?漬映??慍捁瑌敉牎楇潁汍漠杓礮????????????ㄠ?? ̄?????????扩牡?季??嵩?堯? ̄夠奷??塨唠??呲??婡??丠?呡??具?乹?奧????丠??奲??婲??乩??塩????敩瑤愠扳潹汮楴捨?敳湩杳椠湡敮敤爠楩湴杳?潩晭?瑡档整?慯据椠摭?瑸潥汤攭牡慣湩瑤?祦敥慲獭瑥??楡?偩楯据桛楊慝?欠畁摰牰楬慩癥穤攠癍楩楣??楢??晬潯牧?攠晡普楤挠楂敩湯瑴?汣?浮慯汬楯捧?愬挠椲搰?瀳爬漠搹男挨琳椩漺渠?愱琹?氭漱眲‰瀰?嬼?嵲???攷瑝愠扈潏汎楇挠??測朠楎湉故敌牓楅湎朠??㈠き????????ㄠ?の???づ??扩牮?嬠??崠?婩??乡????????剣入??奣啥?????坩啡???? ̄??啡?婫???????夠??奣啴????坰?乡??????汦?汲愠捦瑵楴捵?慥挠楢摩?灲牥潦摩畮捥瑲楩潥湳??楝?瘠楃慥??極??獲甠獡瑮慤椠湍慯扬汥散?湬敡畲琠牌慩汦楥稠敓牣?晥牮散敥?爬漠甲琰攱′戬礠?改渨朱椶温攺攠爲椶渷朱?愲挶椹搰?琼潢汲放牛愴游瑝?祚效慏獕琠??椬?偌楁捍桁椠慓?欬甠摓牁楎態癁穒敁癎楁楒??楁?孁?崠???潐畁牒湋愠汓?漠晍??条牢楯捬畩汣琠略牮慧汩?慥湥摲??潧漠摯??格敩派楐獳瑥牵祤???の????????????????????ㄠ?は? the 1,3-propanediol production from glycerol[J]. Bioresource Technology, 2019, 292: 121933.
    [49] LIAN JZ, MISHRA S, ZHAO HM. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications[J]. Metabolic Engineering, 2018, 50: 85-108.
    [50] BLANC P, GOMA G. Kinetics of inhibition in propionic acid fermentation[J]. Bioprocess Engineering, 1987, 2(4): 175-179.
    [51] POBLETE-CASTRO I, BECKER J, DOHNT K, DOS SANTOS VM, WITTMANN C. Industrial biotechnology of Pseudomonas putida and related species[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2279-2290.
    [52] CALERO P, NIKEL PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms[J]. Microbial Biotechnology, 2019, 12(1): 98-124.
    [53] KOOPMAN F, WIERCKX N, de WINDE JH, RUIJSSENAARS HJ. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16): 6291-6296.
    [54] GUARNIERI MT, ANN FRANDEN M, JOHNSON CW, BECKHAM GT. Conversion and assimilation of furfural and 5-(hydroxymethyl) furfural by Pseudomonas putida KT2440[J]. Metabolic Engineering Communications, 2017, 4: 22-28.
    [55] KAMPERS LFC, VOLKERS RJM, MARTINS DOS SANTOS VAP. Pseudomonas putida KT2440 is HV1 certified, not GRAS[J]. Microbial Biotechnology, 2019, 12(5): 845-848.
    [56] MA C, MU QX, WANG L, SHI YN, ZHU LF, ZHANG SS, XUE YF, TAO Y, MA YH, YU B. Bio-production of high-purity propionate by engineering l-threonine degradation pathway in Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 2020, 104(12): 5303-5313.
    [57] MU QX, SHI YN, LI RS, MA C, TAO Y, YU B. Production of propionate by a sequential fermentation- biotransformation process via l-threonine[J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13895-13903.
    [58] SHI YN, LI RS, ZHENG J, XUE YB, TAO Y, YU B. High-yield production of propionate from 1,2-propanediol by engineered Pseudomonas putida KT2440, a robust strain with highly oxidative capacity[J]. Journal of Agricultural and Food Chemistry, 2022, 70(51): 16263-16272.
    [59] TIWARI R, SATHESH-PRABU C, LEE SK. Bioproduction of propionic acid using levulinic acid by engineered Pseudomonas putida[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 939248.
    [60] HESSLINGER C, FAIRHURST SA, SAWERS G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades l-threonine to propionate[J]. Molecular Microbiology, 1998, 27(2): 477-492.
    [61] MA C, SHI YN, MU QX, LI RS, XUE YF, YU B. Unravelling the thioesterases responsible for propionate formation in engineered Pseudomonas putida KT2440[J]. Microbial Biotechnology, 2021, 14(3): 1237-1242.
    [62] MA C, MU QX, XUE YB, XUE YF, YU B, MA YH. One major facilitator superfamily transporter is responsible for propionic acid tolerance in Pseudomonas putida KT2440[J]. Microbial Biotechnology, 2021, 14(2): 386-391.
    [63] CUI QQ, ZHOU FL, LIU WF, TAO Y. Avermectin biosynthesis: stable functional expression of branched chain α-keto acid dehydrogenase complex from Streptomyces avermitilis in Escherichia coli by selectively regulating individual subunit gene expression[J]. Biotechnology Letters, 2017, 39(10): 1567-1574.
    [64] RATHNASINGH C, RAJ SM, LEE YJ, CATHERINE C, ASHOK S, PARK S. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains[J]. Journal of Biotechnology, 2012, 157(4): 633-640.
    [65] YANG YP, LIN YH, LI LY, LINHARDT RJ, YAN YJ. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering, 2015, 29: 217-226.
    [66] WANG MM, ZHANG L, BOO KH, PARK E, DRAKAKAKI G, ZAKHAROV F. PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 98(1): 112-125.
    [67] YU SQ, PLAN MR, WINTER G, KRÖMER JO. Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 90.
    [68] BENTLEY GJ, NARAYANAN N, JHA RK, SALVACHÚA D, ELMORE JR, PEABODY GL, BLACK BA, RAMIREZ K, de CAPITE A, MICHENER WE, WERNER AZ, KLINGEMAN DM, SCHINDEL HS, NELSON R, FOUST L, GUSS AM, DALE T, JOHNSON CW, BECKHAM GT. Engineering glucose
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑棚,闫更轩,王丽敏,张云志,陶勇,于波. 丙酸的合成生物制造[J]. 生物工程学报, 2024, 40(8): 2678-2694

复制
分享
文章指标
  • 点击次数:279
  • 下载次数: 633
  • HTML阅读次数: 486
  • 引用次数: 0
历史
  • 收稿日期:2024-02-03
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5900089位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司