天然甲醇化学品细胞工厂改造进展与展望
作者:
基金项目:

国家重点研发计划(2021YFC2103500, 2018YFA0901400);国家自然科学基金(32270058, 31970039)


Progress and perspectives of natural cell factories for chemical production from methanol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    甲醇因具有生产工艺成熟、价格低廉和可再生等优点,被认为是下一代生物制造的核心原料之一。通过构建高效的微生物细胞工厂将甲醇转化为化学品已经成为绿色生物制造行业的研究热点。本文聚焦天然甲醇细胞工厂,对非天然甲醇细胞工厂和天然甲醇细胞工厂进行了比较,讨论了天然甲醇细胞工厂存在的关键问题和挑战,综述了近年来围绕这些问题对天然甲醇细胞工厂进行改造的研究进展,并进一步展望了可能的解决方案,为未来天然甲醇细胞工厂的改造提供了可行的研究策略。

    Abstract:

    Methanol has been considered one of the most important alternative carbon sources for the next-generation biomanufacturing due to its low price, mature production processes, and potential sustainability. Constructing microbial cell factories for methanol to chemical biotransformation has become a research hotspot in the green biomanufacturing industry. Focusing on the microorganisms that can naturally use methanol, we compare them with non-natural cell factories for chemical production from methanol. We discuss the key issues and challenges associated with natural cell factories for chemical production from methanol, summarize recent research progress surrounding these issues, and propose possible solutions to these challenges. This review helps to generate feasible guidelines and research strategies for the modification of natural cell factories for efficient methanol to chemical production in the future.

    参考文献
    [1] CLOMBURG JM, CRUMBLEY AM, GONZALEZ R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320): aag0804.
    [2] ÀVILA-CABRÉ S, PÉREZ-TRUJILLO M, ALBIOL J, FERRER P. Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid[J]. Microbial Cell Factories, 2023, 22(1): 237.
    [3] GAO JQ, LI YX, YU W, ZHOU YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943.
    [4] JIN XR, ZHANG WJ, WANG Y, SHENG JY, XU RR, LI JH, DU GC, KANG Z. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris[J]. Green Chemistry, 2021, 23(12): 4365-4374.
    [5] ORITA I, NISHIKAWA K, NAKAMURA S, FUKUI T. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3715-3725.
    [6] CHEN AY, LAN EI. Chemical production from methanol using natural and synthetic methylotrophs[J]. Biotechnology Journal, 2020, 15(6): e1900356.
    [7] 郭姝媛, 吴良焕, 刘香健, 王博, 于涛. 微生物中一碳代谢网络构建的进展与挑战[J]. 合成生物学, 2022, 3(1): 116-137. GUO SY, WU LH, LIU XJ, WANG B, YU T. Developing C1-based metabolic network in methylotrophy for biotransformation[J]. Synthetic Biology Journal, 2022, 3(1): 116-137 (in Chinese).
    [8] 刘康, 乔杨怡, 张尚杰, 郭峰, 马江锋, 信丰学, 章文明, 姜岷. 甲醇生物转化合成化学品的研究进 展[J]. 生物工程学报, 2023, 39(6): 2430-2448. LIU K, QIAO YY, ZHANG SJ, GUO F, MA JF, XIN FX, ZHANG WM, JIANG M. Advances in biotransformation of methanol into chemicals[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2430-2448 (in Chinese).
    [9] RUßMAYER H, BUCHETICS M, GRUBER C, VALLI M, GRILLITSCH K, MODARRES G, GUERRASIO R, KLAVINS K, NEUBAUER S, DREXLER H, STEIGER M, TROYER C, AL CHALABI A, KREBIEHL G, SONNTAG D, ZELLNIG G, DAUM G, GRAF AB, ALTMANN F, KOELLENSPERGER G, et al. Systems-level organization of yeast methylotrophic lifestyle[J]. BMC Biology, 2015, 13(1): 80.
    [10] WANG Y, FAN LW, TUYISHIME P, ZHENG P, SUN JB. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing[J]. Trends in Biotechnology, 2020, 38(6): 650-666.
    [11] ZHAN CJ, LI XW, YANG YK, NIELSEN J, BAI ZH, CHEN Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals[J]. Biotechnology and Bioengineering, 2021, 118(10): 3655-3668.
    [12] ZHU TC, ZHAO TX, BANKEFA OE, LI Y. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities[J]. Biotechnology Advances, 2020, 39: 107467.
    [13] MÜLLER JEN, MEYER F, LITSANOV B, KIEFER P, POTTHOFF E, HEUX S, QUAX WJ, WENDISCH VF, BRAUTASET T, PORTAIS JC, VORHOLT JA. Engineering Escherichia coli for methanol conversion[J]. Metabolic Engineering, 2015, 28: 190-201.
    [14] CHEN FYH, JUNG HW, TSUEI CY, LIAO JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14.
    [15] WANG X, WANG XL, LU XL, MA C, CHEN KQ, OUYANG PK. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli[J]. Biotechnology for Biofuels, 2019, 12: 17.
    [16] WHITAKER WB, JONES JA, BENNETT RK, GONZALEZ JE, VERNACCHIO VR, COLLINS SM, PALMER MA, SCHMIDT S, ANTONIEWICZ MR, KOFFAS MA, PAPOUTSAKIS ET. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli[J]. Metabolic Engineering, 2017, 39: 49-59.
    [17] YU H, LIAO JC. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9(1): 3992.
    [18] ZHU WL, CUI JY, CUI LY, LIANG WF, YANG S, ZHANG C, XING XH. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(5): 2171-2182.
    [19] MIAO LT, LI Y, ZHU TC. Metabolic engineering of methylotrophic Pichia pastoris for the production of β-alanine[J]. Bioresources and Bioprocessing, 2021, 8(1): 89.
    [20] BRAUTASET T, JAKOBSEN ØM, DEGNES KF, NETZER R, NÆRDAL I, KROG A, DILLINGHAM R, FLICKINGER MC, ELLINGSEN TE. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for l-lysine production from methanol at 50 ℃[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 951-964.
    [21] SUZUKI T, YAMANE T, SHIMIZU S. Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding[J]. Applied Microbiology and Biotechnology, 1986, 24(5): 370-374.
    [22] GUO F, DAI ZX, PENG WF, ZHANG SJ, ZHOU J, MA JF, DONG WL, XIN FX, ZHANG WM, JIANG M. Metabolic engineering of Pichia pastoris for malic acid production from methanol[J]. Biotechnology and Bioengineering, 2021, 118(1): 357-371.
    [23] CAI P, WU XY, DENG J, GAO LH, SHEN YW, YAO L, ZHOU YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): e2201711119.
    [24] GAO LM, CAI MH, SHEN W, XIAO SW, ZHOU XS, ZHANG YX. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production[J]. Microbial Cell Factories, 2013, 12: 77.
    [25] WEFELMEIER K, SCHMITZ S, HAUT AM, OTTEN J, JÜLICH T, BLANK LM. Engineering the methylotrophic yeast Ogataea polymorpha for lactate production from methanol[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1223726.
    [26] ZHAI XX, GAO JQ, LI YX, GRININGER M, ZHOU YJ. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(12): e2220816120.
    [27] WEFELMEIER K, SCHMITZ S, KÖSTERS BJ, LIEBAL UW, BLANK LM. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha[J]. Microbial Cell Factories, 2024, 23(1): 8.
    [28] LIANG WF, CUI LY, CUI JY, YU KW, YANG S, WANG TM, GUAN CG, ZHANG C, XING XH. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply[J]. Metabolic Engineering, 2017, 39: 159-168.
    [29] SONNTAG F, KRONER C, LUBUTA P, PEYRAUD R, HORST A, BUCHHAUPT M, SCHRADER J. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol[J]. Metabolic Engineering, 2015, 32: 82-94.
    [30] MÜLLER JEN, LITSANOV B, BORTFELD-MILLER M, TRACHSEL C, GROSSMANN J, BRAUTASET T, VORHOLT JA. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3[J]. Proteomics, 2014, 14(6): 725-737.
    [31] SANFORD PA, WOOLSTON BM. Synthetic or natural? Metabolic engineering for assimilation and valorization of methanol[J]. Current Opinion in Biotechnology, 2022, 74: 171-179.
    [32] EGLI T, BOSSHARD C, HAMER G. Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern[J]. Biotechnology and Bioengineering, 1986, 28(11): 1735-1741.
    [33] GUO F, QIAO YY, XIN FX, ZHANG WM, JIANG M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris[J]. Trends in Biotechnology, 2023, 41(8): 1066-1079.
    [34] DAI ZX, GU HL, ZHANG SJ, XIN FX, ZHANG WM, DONG WL, MA JF, JIA HH, JIANG M. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae[J]. Bioresource Technology, 2017, 245(Pt B): 1407-1412.
    [35] ZHAN CJ, LI XW, LAN GX, BAIDOO EEK, YANG YK, LIU YZ, SUN Y, WANG SJ, WANG YY, WANG GK, NIELSEN J, KEASLING JD, CHEN Y, BAI ZH. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph[J]. Nature Catalysis, 2023, 6(5): 435-450.
    [36] KUVSHINNIKOV VD, VOROB’EV AV, EROSHIN VK, MINKEVICH IG. Growth efficiency and the specific rate of the yeast Hansenula polymorpha during continuous cultivation on methanol[J]. Prikladnaia Biokhimiia i Mikrobiologiia, 1978, 14(3): 366-372.
    [37] van DIJKEN JP, OTTO R, HARDER W. Growth of Hansenula polymorpha in a methanol-limited chemostat. Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism[J]. Archives of Microbiology, 1976, 111(1/2): 137-144.
    [38] SUZUKI T, YAMANE T, SHIMIZU S. Mass production of poly-β-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph[J]. Applied Microbiology and Biotechnology, 1986, 23(5): 322-329.
    [39] WU XY, CAI P, GAO LH, LI YX, YAO L, ZHOU YJ. Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(16): 6445-6453.
    [40] WANG Y, FAN LW, TUYISHIME P, LIU J, ZHANG K, GAO N, ZHANG ZH, NI XM, FENG JH, YUAN QQ, MA HW, ZHENG P, SUN JB, MA YH. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum[J]. Communications Biology, 2020, 3(1): 217.
    [41] ZHANG SJ, GUO F, YANG Q, JIANG YJ, YANG SH, MA JF, XIN FX, HASUNUMA T, KONDO A, ZHANG WM, JIANG M. Improving methanol assimilation in Yarrowia lipolytica via systematic metabolic engineering combined with compartmentalization[J]. Green Chemistry, 2023, 25(1): 183-195.
    [42] BRAUTASET T, WILLIAMS MD, DILLINGHAM RD, KAUFMANN C, BENNAARS A, CRABBE E, FLICKINGER MC. Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in l-lysine-secreting mutants[J]. Applied and Environmental Microbiology, 2003, 69(7): 3986-3995.
    [43] MELO NTM, MULDER KCL, NICOLA AM, CARVALHO LS, MENINO GS, MULINARI E, PARACHIN NS. Effect of pyruvate decarboxylase knockout on product distribution using Pichia pastoris (Komagataella phaffii) engineered for lactic acid production[J]. Bioengineering, 2018, 5(1): 17.
    [44] KIM SW, KIM P, LEE HS, KIM JH. High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation[J]. Biotechnology Letters, 1996, 18(1): 25-30.
    [45] YAMADA R, OGURA K, KIMOTO Y, OGINO H. Toward the construction of a technology platform for chemicals production from methanol: d-lactic acid production from methanol by an engineered yeast Pichia pastoris[J]. World Journal of Microbiology and Biotechnology, 2019, 35(2): 37.
    [46] BOZDAG A, KOMIVES C, FLICKINGER MC. Growth of Bacillus methanolicus in 2 mol/L methanol at 50 ℃: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7): 1027-1038.
    [47] SANTOSO A, HERAWATI N, RUBIANA Y. Effect of methanol induction and incubation time on expression of human erythropoietin in methylotropic yeast Pichia pastoris[J]. MAKARA of Technology Series, 2012, 16(1): 29-34.
    [48] COS O, SERRANO A, MONTESINOS JL, FERRER P, CREGG JM, VALERO F. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures[J]. Journal of Biotechnology, 2005, 116(4): 321-335.
    [49] SCHRADER J, SCHILLING M, HOLTMANN D, SELL D, FILHO MV, MARX A, VORHOLT JA. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends in Biotechnology, 2009, 27(2): 107-115.
    [50] HEYLAND J, FU JN, BLANK LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae[J]. Microbiology, 2009, 155(Pt 12): 3827-3837.
    [51] CASPETA L, SHOAIE S, AGREN R, NOOKAEW I, NIELSEN J. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials[J]. BMC Systems Biology, 2012, 6: 24.
    [52] CUI LY, WANG SS, GUAN CG, LIANG WF, XUE ZL, ZHANG C, XING XH. Breeding of methanol-tolerant Methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution[J]. Biotechnology Journal, 2018, 13(6): e1700679.
    [53] HÖLSCHER T, BREUER U, ADRIAN L, HARMS H, MASKOW T. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium[J]. Applied and Environmental Microbiology, 2010, 76(16): 5585-5591.
    [54] KARBALAEI M, REZAEE SA, FARSIANI H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins[J]. Journal of Cellular Physiology, 2020, 235(9): 5867-5881.
    [55] BARRIGÓN JM, MONTESINOS JL, VALERO F. Searching the best operational strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut+ phenotype: methanol limited or methanol non-limited fed-batch cultures?[J]. Biochemical Engineering Journal, 2013, 75: 47-54.
    [56] GURRAMKONDA C, POLEZ S, SKOKO N, ADNAN A, GÄBEL T, CHUGH D, SWAMINATHAN S, KHANNA N, TISMINETZKY S, RINAS U. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin[J]. Microbial Cell Factories, 2010, 9: 31.
    [57] VOGL T, STURMBERGER L, KICKENWEIZ T, WASMAYER R, SCHMID C, HATZL AM, GERSTMANN MA, PITZER J, WAGNER M, THALLINGER GG, GEIER M, GLIEDER A. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris[J]. ACS Synthetic Biology, 2016, 5(2): 172-186.
    [58] GAO JC, XU JH, ZUO YM, YE CF, JIANG LJ, FENG LJ, HUANG L, XU ZN, LIAN JZ. Synthetic biology toolkit for marker-less integration of multigene pathways into Pichia pastoris via CRISPR/Cas9[J]. ACS Synthetic Biology, 2022, 11(2): 623-633.
    [59] GAO JQ, GAO N, ZHAI XX, ZHOU YJ. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha[J]. iScience, 2021, 24(3): 102168.
    [60] ZHU LP, SONG SZ, YANG S. Gene repression using synthetic small regulatory RNA in Methylorubrum extorquens[J]. Journal of Applied Microbiology, 2021, 131(6): 2861-2875.
    [61] GAO JC, ZUO YM, XIAO F, WANG YL, LI DF, XU JH, YE CF, FENG LJ, JIANG LJ, LIU TF, GAO D, MA B, HUANG L, XU ZN, LIAN JZ. Biosynthesis of catharanthine in engineered Pichia pastoris[J]. Nature Synthesis, 2023, 2(3): 231-242.
    [62] LIU SF, DONG HF, HONG K, MENG J, LIN LC, WU X. Improving methanol utilization by reducing alcohol oxidase activity and adding co-substrate of sodium citrate in Pichia pastoris[J]. Journal of Fungi, 2023, 9(4): 422.
    [63] SAKAI Y, MURDANOTO AP, KONISHI T, IWAMATSU A, KATO N. Regulation of the formate dehydrogenase gene, FDH1, in the methylotrophic yeast Candida boidinii and growth characteristics of an FDH1-disrupted strain on methanol, methylamine, and choline[J]. Journal of Bacteriology, 1997, 179(14): 4480-4485.
    [64] SUNGA AJ, CREGG JM. The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris[J]. Gene, 2004, 330: 39-47.
    [65] YU YF, YANG JS, ZHAO FG, LIN Y, HAN SY. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris[J]. BMC Genomics, 2022, 23(1): 366.
    [66] WOOLSTON BM, KING JR, REITER M, van HOVE B, STEPHANOPOULOS G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli[J]. Nature Communications, 2018, 9(1): 2387.
    [67] BENNETT RK, GONZALEZ JE, WHITAKER WB, ANTONIEWICZ MR, PAPOUTSAKIS ET. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering, 2018, 45: 75-85.
    [68] KRAINER FW, DIETZSCH C, HAJEK T, HERWIG C, SPADIUT O, GLIEDER A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway[J]. Microbial Cell Factories, 2012, 11: 22.
    [69] YUAN XJ, CHEN WJ, MA ZX, YUAN QQ, ZHANG M, HE L, MO XH, ZHANG C, ZHANG CT, WANG MY, XING XH, YANG S. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens[J]. Metabolic Engineering, 2021, 64: 95-110.
    [70] MOSER JW, PRIELHOFER R, GERNER SM, GRAF AB, WILSON IBH, MATTANOVICH D, DRAGOSITS M. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris[J]. Microbial Cell Factories, 2017, 16(1): 49.
    [71] GASSLER T, BAUMSCHABL M, SALLABERGER J, EGERMEIER M, MATTANOVICH D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris[J]. Metabolic Engineering, 2022, 69: 112-121.
    [72] MENG J, LIU SF, GAO L, HONG K, LIU SG, WU X. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale[J]. Microbial Cell Factories, 2023, 22(1): 198.
    [73] 刘永飞, 刘建明, 聂晶磊, 曾安平. 基于CO2等碳一底物的化学品生物合成技术进展及挑战[J]. 科学通报, 2023, 68(19): 2470-2488. LIU YF, LIU JM, NIE JL, ZENG AP. Advances and perspectives of biosynthesis of chemicals based on CO2 and other one-carbon feedstocks[J]. Chinese Science Bulletin, 2023, 68(19): 2470-2488 (in Chinese).
    [74] CHEN CT, CHEN FYH, BOGORAD IW, WU TY, ZHANG RX, LEE AS, LIAO JC. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metabolic Engineering, 2018, 49: 257-266.
    [75] GUO Q, LIU MM, ZHENG SH, ZHENG LJ, MA Q, CHENG YK, ZHAO SY, FAN LH, ZHENG HD. Methanol-dependent carbon fixation for irreversible synthesis of d-allulose from d-xylose by engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2022, 70(44): 14255-14263.
    [76] TUYISHIME P, WANG Y, FAN LW, ZHANG QQ, LI QG, ZHENG P, SUN JB, MA YH. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49: 220-231.
    [77] BERRIOS J, FLORES MO, DÍAZ-BARRERA A, ALTAMIRANO C, MARTÍNEZ I, CABRERA Z. A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3): 407-411.
    [78] CANALES C, ALTAMIRANO C, BERRIOS J. The growth of Pichia pastoris Mut+ on methanol-glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production[J]. Bioprocess and Biosystems Engineering, 2018, 41(12): 1827-1838.
    [79] JORDÀ J, JOUHTEN P, CÁMARA E, MAAHEIMO H, ALBIOL J, FERRER P. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures[J]. Microbial Cell Factories, 2012, 11: 57.
    [80] WANG BL, NESBETH D, KESHAVARZ-MOORE E. Sorbitol/methanol mixed induction reduces process impurities and improves centrifugal dewatering in Pichia pastoris culture[J]. Enzyme and Microbial Technology, 2019, 130: 109366.
    [81] SIBIRNY AA. Yeast peroxisomes: structure, functions and biotechnological opportunities[J]. FEMS Yeast Research, 2016, 16(4): fow038.
    [82] HUTTANUS HM, FENG XY. Compartmentalized metabolic engineering for biochemical and biofuel production[J]. Biotechnology Journal, 2017, 12(6).
    [83] BHATAYA A, SCHMIDT-DANNERT C, LEE PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production[J]. Process Biochemistry, 2009, 44(10): 1095-1102.
    [84] LIU H, CHEN SL, XU JZ, ZHANG WG. Dual regulation of cytoplasm and peroxisomes for improved α-farnesene production in recombinant Pichia pastoris[J]. ACS Synthetic Biology, 2021, 10(6): 1563-1573.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪淑贤,方嘉煜,张延平,李寅,朱泰承. 天然甲醇化学品细胞工厂改造进展与展望[J]. 生物工程学报, 2024, 40(8): 2747-2760

复制
分享
文章指标
  • 点击次数:334
  • 下载次数: 639
  • HTML阅读次数: 432
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第6016032位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司