利用大肠杆菌合成3′-6′-唾液酸乳糖的研究进展
作者:
基金项目:

安徽省博士后研究人员科研活动资助经费(2020B440)


Research progress in the synthesis of 3′- and 6′-sialactose by Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • | | | |
  • 文章评论
    摘要:

    人乳低聚糖(human milk oligosaccharides, HMOs)是母乳中一类结构复杂的聚糖,其作为母乳中的第三大固体成分,在婴幼儿肠道健康和免疫系统发育中具有重要作用。其中,唾液酸化的HMOs是主要成分之一,主要包括3′-唾液酸乳糖(3′-sialactose, 3′-SL)和6′-唾液酸乳糖(6′-sialactose, 6′-SL),这两者在免疫调节、抗炎以及促进益生菌生长等方面发挥着重要作用。因为唾液酸乳糖在婴幼儿食品中的营养价值和应用潜力,利用廉价易得的原料通过微生物发酵制备高浓度唾液酸乳糖成为当前研究热点。本文综述了3′-SL-和6′-SL的功能及其生物合成技术,并详细介绍了利用大肠杆菌合成唾液酸乳糖的研究进展,为未来实现相关工业生产提供了有益的启示。

    Abstract:

    Human milk oligosaccharides (HMOs) are a structurally complex group of unbound polysaccharides, representing the third-largest solid component in breast milk. They play a crucial role in the intestinal health and immune system development of infants. Sialylated HMOs, including 3′-sialactose (3′-SL) and 6′-sialactose (6′-SL), are major components of HMOs, playing significant roles in immune regulation, anti-inflammatory processes, and promotion of probiotic growth. Currently, the cost-effective production of high-value sialactose by microbial fermentation with readily available raw materials has become a research hotspot due to the high nutritional value and potential applications of sialylated HMOs in infant food. This paper summarizes the functions and biosynthesis of 3′-SL and 6′-SL. Furthermore, it reviews the research progress in the synthesis of sialactose by Escherichia coli, offering valuable insights for future industrial production.

    参考文献
    [1] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292. LI CC, LI ML, ZHANG T. Research progress of human milk oligosaccharides[J]. Food and Fermentation Industries, 2021, 47(9): 284-292(in Chinese).
    [2] BODE L. Human milk oligosaccharides: every baby needs a sugar mama[J]. Glycobiology, 2012, 22(9): 1147-1162.
    [3] HAN NS, KIM TJ, PARK YC, KIM J, SEO JH. Biotechnological production of human milk oligosaccharides[J]. Biotechnology Advances, 2012, 30(6): 1268-1278.
    [4] BYCH K, MIKŠ MH, JOHANSON T, HEDEROS MJ, VIGSNÆS LK, BECKER P. Production of HMOs using microbial hosts-from cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019, 56: 130-137.
    [5] GROLLMAN AP, HALL CW, GINSBURG V. Biosynthesis of fucosyllactose and other oligosaccharides found in milk[J]. Journal of Biological Chemistry, 1965, 240(3): 975.
    [6] THUM C, WALLl CR, WEISS GA, WANG W, SZETO IM-Y, DAY L. Changes in HMO Concentrations throughout Lactation: Influencing Factors, Health Effects and Opportunities[J]. Nutrients, 2021, 13(7): 2272.
    [7] THURLL S, MUNZERT M, BOEHM G, MATTEWS C, STAHLl B. Systematic review of the concentrations of oligosaccharides in human milk[J]. Nutrition Reviews, 2017, 75(11): 920-933.
    [8] KUNZ C, RUDLOFF S, BAIER W, KLEIN N, STROBEL S. Oligosaccharides in human milk: structural, functional, and metabolic aspects[J]. Annual Review of Nutrition, 2000, 20: 699-722.
    [9] COPPA GV, GABRIELLI O, PIERANI P, CATASSI C, CARLUCCI A, GIORGI PL. Changes in carbohydrate composition in human milk over 4 months of lactation[J]. Pediatrics, 1993, 91(3): 637-641.
    [10] BEERENS H, ROMOND C, NEUT C. Influence of breast-feeding on the bifid flora of the newborn intestine[J]. The American Journal of Clinical Nutrition, 1980, 33(11 suppl): 2434-2439.
    [11] KUNZ C, RUDLOFF S, BAIER W, KLEIN N, STROBEL S. Oligosaccharides in human milk: structural, functional, and metabolic aspects[J]. Annual Review of Nutrition, 2000, 20: 699-722.
    [12] CHEN X, KOWAL P, WANG PG. Large-scale enzymatic synthesis of oligosaccharides[J]. Current Opinion in Drug Discovery & Development, 2000, 3(6): 756-763.
    [13] KIM J, KIM YJ, KIM JW. Bacterial clearance is enhanced by α2,3- and α2,6-sialactose via receptor-mediated endocytosis and phagocytosis[J]. Infection and Immunity, 2018, 87(1): e00694-18.
    [14] JEON J, KANG LJ, LEE KM, CHO C, SONG EK, KIM W, PARK TJ, YANG S. 3′-sialactose protects against osteoarthritic development by facilitating cartilage homeostasis[J]. Journal of Cellular and Molecular Medicine, 2018, 22(1): 57-66.
    [15] BAEK A, JUNG SH, PYO S, KIM SY, JO S, KIM L, LEE EY, KIM SH, CHO SR. 3′-sialactose protects SW1353 chondrocytic cells from interleukin-1β-induced oxidative stress and inflammation[J]. Frontiers in Pharmacology, 2021, 12: 609817.
    [16] YU ZT, CHEN C, NEWBURG DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes[J]. Glycobiology, 2013, 23(11): 1281-1292.
    [17] BONDUE P, LEBRUN S, TAMINIAU B, EVERAERT N, LaPOINTE G, HENDRICK C, GAILLEZ J, CRÈVECOEUR S, DAUBE G, DELCENSERIE V. Effect of Bifidobacterium crudilactis and 3′-sialactose on the toddler microbiota using the SHIME® model[J]. Food Research International, 2020, 138(Pt A): 109755.
    [18] CHARBONNEAU MR, O’DONNELL D, BLANTON LV, TOTTEN SM, DAVIS JCC, BARRATT MJ, CHENG JY, GURUGE J, TALCOTT M, BAIN JR, MUEHLBAUER MJ, ILKAYEVA O, WU C, STRUCKMEYER T, BARILE D, MANGANI C, JORGENSEN J, FAN YM, MALETA K, DEWEY KG, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition[J]. Cell, 2016, 164(5): 859-871.
    [19] AUTRAN CA, KELLMAN BP, KIM JH, ASZTALOS E, BLOOD AB, SPENCE ECH, PATEL AL, HOU JY, LEWIS NE, BODE L. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants[J]. Gut Microbes, 2018, 67(6): 1064-1070.
    [20] 张雯婷, 壮文军, 杨明美, 丁洁珺, 闫竞宇, 崔玥, 恽琪, 顾猛. 双唾液酸乳糖-N-四糖保护新生肠道屏障预防坏死性小肠结肠炎的研究[J]. 中华新生儿科杂志, 2022, 37(4): 350-355. ZHANG WT, ZHUANG WJ, YANG MM, DING JJ, YAN JJ, CUI Y, YUN Q, GU M. The protective effects of disialyllacto-N-tetraose of neonatal intestinal barriers in the prevention of necrotizing enterocolitis[J]. Chinese Journal of Neonatology, 2022, 37(4): 350-355(in Chinese).
    [21] YAMABE M, KAIHATSU K, EBARA Y. Sialactose-modified three-way junction DNA as binding inhibitor of influenza virus hemagglutinin[J]. Bioconjugate Chemistry, 2018, 29(5): 1490-1494.
    [22] SUN XL. The role of cell surface sialic acids for SARS-CoV-2 infection[J]. Glycobiology, 2021, 31(10): 1245-1253.
    [23] YU X, WU Q, WANG LP, ZHAO YJ, ZHANG QQ, MENG QT, Pawan, WANG SJ. Silencing of ST6GalNAc I suppresses the proliferation, migration and invasion of hepatocarcinoma cells through PI3K/AKT/NF-κB pathway[J]. Tumor Biology, 2016, 37(9): 12213-12221.
    [24] NOYE TUPLIN EW, CHLEILAT F, ALUKIC E, REIMER RA. The effects of human milk oligosaccharide supplementation during critical periods of development on the mesolimbic dopamine system[J]. Neuroscience, 2021, 459: 166-178.
    [25] HAUSER J, PISA E, ARIAS VÁSQUEZ A, TOMASI F, TRAVERSA A, CHIODI V, MARTIN FP, SPRENGER N, LUKJANCENKO O, ZOLLINGER A, METAIRON S, SCHNEIDER N, STEINER P, MARTIRE A, CAPUTO V, MACRÌ S. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode[J]. Molecular Psychiatry, 2021, 26: 2854-2871.
    [26] CHO S, ZHU ZL, LI TF, BALUYOT K, HOWELL BR, HAZLETT HC, ELISON JT, HAUSER J, SPRENGER N, WU D, LIN WL. Human milk 3′-sialactose is positively associated with language development during infancy[J]. The American Journal of Clinical Nutrition, 2021, 114(2): 588-597.
    [27] 翟娅菲, 禹晓, 相启森, 张华, 张星稀, 申瑞玲. 人乳寡糖体外合成研究进展[J]. 食品工业科技, 2018, 39(5): 348-352. ZHAI YF, YU X, XIANG QS, ZHANG H, ZHANG XX, SHEN RL. Research progress of human milk oligosaccharides synthesis in vitro[J]. Science and Technology of Food Industry, 2018, 39(5): 348-352(in Chinese).
    [28] TAYLOR G. Sialidases: structures, biological significance and therapeutic potential[J]. Current Opinion in Structural Biology, 1996, 6(6): 830-837.
    [29] NIDETZKY B, GUTMANN A, ZHONG C. Leloir glycosyltransferases as biocatalysts for chemical production[J]. ACS Catalysis, 2018, 8(7): 6283-6300.
    [30] SCHENKMAN S, JIANG MS, HART GW, NUSSENZWEIG V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells[J]. Cell, 1991, 65(7): 1117-1125.
    [31] SINGH S, SCIGELOVA M, HALLBERG ML, HOWARTH OW, SCHENKMAN S, CROUT DHG. Synthesis of sialyloligosaccharides using the trans-sialidase from Trypanosoma cruzi: novel branched and di-sialylated products from digalactoside acceptors[J]. Chemical Communications, 2000(12): 1013-1014.
    [32] PONTES-de-CARVALHO LC, TOMLINSON S, NUSSENZWEIG V. Trypanosoma rangeli sialidase lacks trans-sialidase activity[J]. Molecular and Biochemical Parasitology, 1993, 62(1): 19-25.
    [33] MICHALAK M, LARSEN DM, JERS C, ALMEIDA JRM, WILLER M, LI HY, KIRPEKAR F, KJÆRULFF L, GOTFREDSEN CH, NORDVANG RT, MEYER AS, MIKKELSEN JD. Biocatalytic production of 3′-sialactose by use of a modified sialidase with superior trans-sialidase activity[J]. Process Biochemistry, 2014, 49(2): 265-270.
    [34] GUO LC, CHEN XD, XU L, XIAO M, LU LL. Enzymatic synthesis of 6′-sialactose, a dominant sialylated human milk oligosaccharide, by a novel exo-α-sialidase from Bacteroides fragilis NCTC9343[J]. Applied and Environmental Microbiology, 2018, 84(13): e00071-18.
    [35] GILBERT M, WATSON DC, CUNNINGHAM AM, JENNINGS MP, YOUNG NM, WAKARCHUK WW. Cloning of the lipooligosaccharide alpha-2,3- sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae[J]. The Journal of Biological Chemistry, 1996, 271(45): 28271-28276.
    [36] GILBERT M, BAYER R, CUNNINGHAM AM, DeFREES S, GAO YH, WATSON DC, YOUNG NM, WAKARCHUK WW. The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/ sialyltransferase fusion[J]. Nature Biotechnology, 1998, 16: 769-772.
    [37] YU H, CHEN X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates[J]. Organic & Biomolecular Chemistry, 2016, 14(10): 2809-2818.
    [38] YU H, CHOKHAWALA H, KARPEL R, YU H, WU BY, ZHANG JB, ZHANG YX, JIA Q, CHEN X. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries[J]. Journal of the American Chemical Society, 2005, 127(50): 17618-17619.
    [39] YAMAMOTO T, NAKASHIZUKA M, KODAMA H, KAJIHARA Y, TERADA I. Purification and characterization of a marine bacterial-galactoside 2,6-sialyltransferase from Photobacterium damsela JTO16O[J]. Journal of Biochemistry, 1996, 120(1): 104-110.
    [40] CHOI YH, KIM JH, PARK JH, LEE N, KIM DH, JANG KS, PARK IH, KIM BG. Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialactose synthesis[J]. Glycobiology, 2014, 24(2): 159-169.
    [41] MERTSCH A, HE N, YI D, KICKSTEIN M, FESSNER WD. An α2,3-sialyltransferase from Photobacterium phosphoreum with broad substrate scope: controlling hydrolytic activity by directed evolution[J]. Chemistry, 2020, 26(50): 11614-11624.
    [42] SCHELCH S, EIBINGER M, GROSS BELDUMA S, PETSCHACHER B, KUBALLA J, NIDETZKY B. Engineering analysis of multienzyme cascade reactions for 3′-sialactose synthesis[J]. Biotechnology and Bioengineering, 2021, 118(11): 4290-4304.
    [43] WANG JJ, WU JY, LI ZK, CHEN XS, LIU WW, YAO JM. Protein engineering of CMP kinases to improve thermal stability and resultant production of 3′-sialactose[J]. Biotechnology & Biotechnological Equipment, 2022, 36(1): 433-441.
    [44] SCHELCH S, ZHONG C, PETSCHACHER B, NIDETZKY B. Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production[J]. Biotechnology Advances, 2020, 44: 107613.
    [45] TAN YM, ZHANG Y, HAN YB, LIU H, CHEN HF, MA FQ, WITHERS SG, FENG Y, YANG GY. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method[J]. Science Advances, 2019, 5(10): eaaw8451.
    [46] SCHM LK, CZABANY T, LULEY GC, PAVKOV KT, RIBITSCH D, SCHWAB H, GRUBER K, WEBER H, NIDETZKY B. Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β-d-galactoside sialyltransferase by active-site redesign[J]. Chemical Communications, 2015, 51(15): 3083-3086.
    [47] GUO Y, JERS C, MEYER AS, ARNOUS A, LI HY, KIRPEKAR F, MIKKELSEN JD. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3′-sialyl and 6′-sialyl glycans[J]. Journal of Biotechnology, 2014, 170(1): 60-67.
    [48] PERNA VN, DEHLHOLM C, MEYER AS. Enzymatic production of 3′-sialactose in milk[J]. Enzyme and Microbial Technology, 2021, 148(1): 109829.
    [49] BYCH K, MIKS MH, JOHANSON T, HEDEROS MJ, VIGSNAS LK, BECKER P. Production of HMOs using microbial hosts: from cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019, 56: 130-137.
    [50] PRIEM B, GILBERT M, WAKARCHUK WW, HEYRAUD A, SAMAIN E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria[J]. Glycobiology, 2002, 12(4): 235-240.
    [51] SPRENGER GA, BAUMGÄRTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J]. Journal of Biotechnology, 2017, 258: 79-91.
    [52] DROUILLARD S, MINE T, KAJIWARA H, YAMAMOTO T, SAMAIN E. Efficient synthesis of 6′-sialactose, 6,6′-disialactose, and 6′-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224[J]. Carbohydrate Research, 2010, 345(10): 1394-1399.
    [53] ZHANG JM, ZHU YY, ZHANG WL, MU WM. Efficient production of a functional human milk oligosaccharide 3′-sialactose in genetically engineered Escherichia coli[J]. ACS Synthetic Biology, 2022, 11(8): 2837-2845.
    [54] LI CC, LI ML, HU MM, GAO W, MIAO M, ZHANG T. Engineering Escherichia coli for the efficient biosynthesis of 6′-sialactose[J]. Food Bioscience, 2023, 55: 103040.
    [55] ZHANG XL, WANG CY, LV XQ, LIU L, LI JH, DU GC, WANG M, LIU YF. Engineering of synthetic multiplexed pathways for high-level N-acetylneuraminic acid bioproduction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(49): 14868-14877.
    [56] ZHANG XL, LIU YF, LIU L, LI JH, DU GC, CHEN J. Microbial production of sialic acid and sialylated human milk oligosaccharides: advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 787-800.
    [57] 王磊, 黄笛, 许莹莹, 刘斌. 一种构建的重组大肠杆菌及生物合成3′-唾液乳糖的方法: CN106190938A[P]. 2016-12-07. WANG L, HUANG D, XU YY, LIU B. A method for constructing recombinant Escherichia coli and the biosynthesis of 3′-sialactose: CN106190938A[P]. 2016-12-07(in Chinese).
    [58] 王梦楠, 杨静华, 陶勇, 金城. 一种产唾液酸乳糖大肠杆菌工程菌株的构建方法: CN107904253A[P]. 2018-04-13. WANG MN, YANG JH, TAO Y, JIN C. A method for an engineered strain producing lactobacillus sialactose: CN107904253A[P]. 2018-04-13(in Chinese).
    [59] 王磊, 冯露, 黄笛, 王茹. 一种基因工程构建的重组大肠杆菌及生物合成6′-唾液乳糖的方法: CN112458034A[P]. 2021-03-09. WANG L, FENG L, HUANG D, WANG R. A method of recombinant Escherichia coli and biosynthesis of 6′-sialactose: CN112458034A[P]. 2021-03-09(in Chinese).
    [60] 吴金勇, 李忠奎, 陈祥松, 袁丽霞, 王纪, 王煜, 王刚, 孙立洁, 李翔宇, 姚建铭. 一种高产唾液酸乳糖的重组宿主菌及其构建方法和应用: CN113151133A[P]. 2021-07-23. WU JY, LI ZK, CHEN XS, YUAN LX, WANG J, WANG Y, WANG G, SUN LJ, LI XY, YAO JM. A recombinant host bacterium with high yield of sialactose and its construction method and application: CN113151133A[P]. 2021-07-23(in Chinese).
    [61] 汪志明, 刘洋, 余超, 陆姝欢, 李翔宇. 高产唾液酸乳糖的工程菌及其构建方法与应用: CN114350584A[P]. 2022-04-15. WANG ZM, LIU Y, YU C, LU ZH, LI XY. Engineering bacteria for high yield of sialactose acid and its construction methods and application: CN114350584A[P]. 2022-04-15(in Chinese).
    [62] 沐万孟, 张文立, 张嘉萌, 朱莺莺. 一种高产3′-唾液酸乳糖的大肠杆菌工程菌株的构建方法及应用: CN114874966A[P]. 2022-08-09. MU WM, ZHANG WL, ZHANG JM, ZHU YY. Construction method and application of an Escherichia coli engineering strain with high 3′-sialactose: CN114874966A[P]. 2022-08-09(in Chinese).
    [63] 孙怡, 刘龙, 施晓玲, 陈坚, 吕雪芹, 堵国成, 李江华, 刘延峰, 朱咏莲, 李古月. 一种提高3′-唾液酸乳糖产量的基因工程菌Z3及其应用: CN115232778A[P]. 2022-10-25. SUN Y, LIU L, SHI XL, CHEN J, Lü XQ, DU GC, LI JH, LIU YF, ZHU YL, LI GY. A genetically engineered bacteria Z3 for enhancing the production of 3′-sialactose and its application: CN115232778A[P]. 2022-10-25(in Chinese).
    [64] JENNEWEIN S. Spray-dried sialyllactose: AU2018380959[P]. 2020-06-18.
    [65] JENNEWEIN S, HELFRICH M, ENGELS B. Simple method for the purification of a sialactose: US20210212335[P]. 2021-07-15.
    [66] PEDERSEN M, D’ARRIGO I, BYCH KAMPMANN K, PAPADAKIS M. New major facilitator superfamily (MFS) protein (FRED) in production of sialylated HMOs: WO2022/157280[P]. 2022-07-28.
    [67] YANG SY, JEON JM, KANG LJ, CHO CM. Composition for preventing or treating osteoarthritis containing sialactose or salt thereof as active ingredient: HK42022045985.3[P]. 2022-03-25.
    [68] SAMI D, FRANCIS F, NORBERT S. A nutritional composition comprising 6′-SL and LNT in combination to improve the gastrointestinal barrier function: US17416578[P]. 2021-07-23.
    [69] YANG SY, JEON J, KANG LJ, CHO C. Composition for inhibiting immune cell proliferation comprising sialyllactose or derivative thereof and method thereof: US16130522[P]. 2022-04-05.
    [70] NEWBURG DAVID S.YU ZT. Prebiotic effect of sialactose: US201314391739[P]. 2015-09-24.
    [71] HOLST H HG, WILLIAM S.M, METTE TJ, ANDERS S. A concentrate derived from a milk product enriched in naturally occurring sialactose and a process for preparation thereof: US201213713942[P]. 2017-11-01.
    [72] 母乳低聚糖(HMOs)市场增长势头强劲我国市场有待进一步开发[EB/OL]. [2023-08-28]. https://www.newsijie.com/sijiezixun/siguandian/2023/0828/11334072.html.
    [73] ZHU YY, ZHANG JM, ZHANG WL, MU WM. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3′-sialactose and 6′-sialactose[J]. Biotechnology Advances, 2023, 62: 108058.
    [74] KNOTT GJ, DOUDNA JA. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405): 866-869.
    [75] HUANG Z, LI Y, LUO Y, GUO HY. Human milk oligosaccharides 3′-sialactose and 6′-sialactose protect intestine against necrotizing enterocolitis damage induced by hypoxia[J]. Journal of Functional Foods, 2021, 86: 104708.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕欣洋,陈祥松,姚建铭,吴金勇,袁丽霞. 利用大肠杆菌合成3′-和6′-唾液酸乳糖的研究进展[J]. 生物工程学报, 2024, 40(9): 2846-2865

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 981
  • HTML阅读次数: 527
  • 引用次数: 0
历史
  • 收稿日期:2023-11-27
  • 最后修改日期:2024-04-19
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6020221位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司