原儿茶酸脱羧关键酶挖掘改造优化儿茶酚生物合成
作者:
基金项目:

国家重点研发计划(2018YFA0901400);国家自然科学基金(32200063);天津市合成生物技术创新能力提升行动(TSBICIP-CXRC-057);中国博士后科学基金(2022M723339)


Screening and engineering of a protocatechuic acid decarboxylase for efficient biosynthesis of catechol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    儿茶酚(catechol, CA)是一种重要的化工和医药中间体,应用范围极为广泛。目前制备CA的方法是苯酚羟化法,但由于该方法存在对环境污染大、石化资源不可再生等问题,使得生物合成儿茶酚的方法逐渐受到关注。但受制于原儿茶酸脱羧酶的活性不够高且生物合成儿茶酚生产效率较低,难以满足大规模工业生产的要求。为了进一步提高儿茶酚生产效率,本研究首先对不同来源的21个原儿茶酸(protocatechuic acid, PCA)脱羧酶进行筛选,发现理研菌(Rikenellaceae)来源的RbAroY脱羧酶性能最好,含有该酶的全细胞生物催化剂ER11能够合成13.54 g/L儿茶酚。然后利用在线工具HotSpot Wizard对该酶进行稳定性计算,选取自由能下降最多的10个潜在突变位点进行验证,发现含有突变子RbAroYG99A的全细胞生物催化剂ERT01能够催化合成15.16 g/L儿茶酚,较野生型产量提高12%。之后对生物催化条件进一步优化,以原儿茶酸为底物,全细胞生物催化剂ERT01能够催化合成25.70 g/L儿茶酚。最后,以3-脱氢莽草酸发酵液为底物,同时表达3-脱氢莽草酸脱水酶和原儿茶酸脱羧酶的全细胞生物催化剂DER03,催化合成29.55 g/L儿茶酚,为目前国内外报道的生物合成的最高产量。本研究为儿茶酚生物合成工业生产提供了重要参考。

    Abstract:

    Catechol (CA) is an important chemical and pharmaceutical intermediate with wide applications. At present, CA is produced by phenol hydroxylation with non-renewable petrochemical resources, which causes serious environmental pollution. Hence, the biosynthesis of CA attracts much attention recently. However, due to the low activities of protocatechuic acid (PCA) decarboxylases, the production efficiency of biosynthetic catechol is too low to meet the requirements of large-scale industrial production. To improve the yield of CA, we screened 21 PCA decarboxylases from different species. RbAroY originated from Rikenellaceae had the best catalytic performance. The whole-cell biocatalyst ER11 with RbAroY was able to produce CA at a titer of 13.54 g/L. Then, the online tool HotSpot Wizard was employed to measure the enzyme stability, which revealed 10 potential mutation sites causing significant decreases in Gibbs free energy. The whole-cell biocatalyst ERT01 with the mutated RbAroYG99A could produce CA at a titer of 15.16 g/L, which increased by 12% compared with that of the wild-type whole-cell biocatalyst. After optimization of the biocatalytic conditions, the whole-cell biocatalyst ERT01 was able to produce CA at a titer of 25.70 g/L with PCA as the substrate. Finally, with the fermentation broth of 3-dehydroshikimate as the substrate, the whole-cell biocatalyst DER03 expressing both 3-dehydroshikimate dehydratase and PCA decarboxylase realized the production CA at a titer of 29.55 g/L, which is currently the highest biosynthetic titer reported. This study provides a reference for the industrial production of CA by biosynthesis.

    参考文献
    [1] PUGH S, McKENNA R, OSMAN M, THOMPSON B, NIELSEN DR. Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli[J]. Process Biochemistry, 2014, 49(11): 1843-1850.
    [2] BALDERAS-HERNÁNDEZ VE, TREVIÑO-QUINTANILLA LG, HERNÁNDEZ-CHÁVEZ G, MARTINEZ A, BOLÍVAR F, GOSSET G. Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1[J]. Microbial Cell Factories, 2014, 13(1): 136.
    [3] LI WS, XIE DM, FROST JW. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis[J]. Journal of the American Chemical Society, 2005, 127(9): 2874-2882.
    [4] 庞振涛, 焦凤茹, 刘晓东. 邻苯二酚技术进展与市场分析[J]. 化工中间体, 2008(1): 27-29. PANG ZT, JIAO FR, LIU XD. Market analysis and technological progress of pyrocatechol[J]. Chemical Intermediates, 2008(1): 27-29(in Chinese).
    [5] 胡智涛. 苯酚羟基化制备苯二酚工艺研究[J]. 中国石油和化工标准与质量, 2023, 43(15): 196-198. HU ZT. Study on preparation of hydroquinone by hydroxylation of phenol[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(15): 196-198(in Chinese).
    [6] 张宗武, 梁璇, 张敏, 李俊芳, 武波. 产邻苯二酚工程菌的构建及发酵条件的优化[J]. 中国生物工程杂志, 2006, 26(9): 67-71. ZHANG ZW, LIANG X, ZHANG M, LI JF, WU B. The formation of recombinant strain producing catechol and the optimization of fermentation conditions[J]. China Biotechnology, 2006, 26(9): 67-71(in Chinese).
    [7] WEBER C, BRÜCKNER C, WEINREB S, LEHR C, ESSL C, BOLES E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2012, 78(23): 8421-8430.
    [8] LI K, MIKOLA MR, DRATHS KM, WORDEN RM, FROST JW. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli[J]. Biotechnology and Bioengineering, 1999, 64(1): 61-73.
    [9] CHOI SS, SEO SY, PARK SO, LEE HN, SONG JS, KIM JY, PARK JH, KIM S, LEE SJ, CHUN GT, KIM ES. Cell factory design and culture process optimization for dehydroshikimate biosynthesis in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 241.
    [10] LI J, YE BC. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid[J]. Bioresource Technology, 2021, 319: 124239.
    [11] KOGURE T, SUDA M, HIRAGA K, INUI M. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways[J]. Metabolic Engineering, 2021, 65: 232-242.
    [12] 郭明, 胡昌华. 生物转化: 从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(4): 110-115. GUO M, HU CH. Bioconversion—from whole cell biocatalysis to metabolic engineering[J]. China Biotechnology, 2010, 30(4): 110-115(in Chinese).
    [13] SONG GT, WU FL, PENG YF, JIANG XL, WANG QH. High-level production of catechol from glucose by engineered Escherichia coli[J]. Fermentation, 2022, 8(7): 344.
    [14] WANG XS, WU FL, ZHOU D, SONG GT, CHEN WJ, ZHANG CY, WANG QH. Cofactor self-sufficient whole-cell biocatalysts for the relay-race synthesis of shikimic acid[J]. Fermentation, 2022, 8(5): 229.
    [15] DATSENKO KA, WANNER BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.
    [16] ZHOU D, WU FL, PENG YF, QAZI MA, LI RS, WANG YZ, WANG QH. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 92.
    [17] LU J, TANG JL, LIU Y, ZHU XN, ZHANG TC, ZHANG XL. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2455-2462.
    [18] 吴凤礼, 彭彦峰, 徐毅诚, 曹鹏, 陈五九, 王钦宏. 代谢工程改造微生物生产芳香族化合物的研究进展[J]. 生物加工过程, 2017, 15(5): 9-23. WU FL, PENG YF, XU YC, CAO P, CHEN WJ, WANG QH. Advances in microbial metabolic engineering for producing aromatic chemicals[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(5): 9-23(in Chinese).
    [19] 宋国田, 江小龙, 陈五九, 彭彦峰, 路福平, 王钦宏. 产顺,顺-粘康酸细胞工厂的构建与优化[J]. 生物工程学报, 2016, 32(9): 1212-1223. SONG GT, JIANG XL, CHEN WJ, PENG YF, LU FP, WANG QH. Construction and optimization of microbial cell factories for producing cis,cis-muconic acid[J]. Chinese Journal of Biotechnology, 2016, 32(9): 1212-1223(in Chinese).
    [20] CABRERA-VALLADARES N, MARTÍNEZ A, PIÑERO S, LAGUNAS-MUÑOZ VH, TINOCO R, de ANDA R, VÁZQUEZ-DUHALT R, BOLÍVAR F, GOSSET G. Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase[J]. Enzyme and Microbial Technology, 2006, 38(6): 772-779.
    [21] ITO S, WAKAMATSU K. Chemistry of mixed melanogenesis: pivotal roles of dopaquinone[J]. Photochemistry and Photobiology, 2008, 84(3): 582-592.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田立岩,李静,江小龙,宋国田,路福平,戴宗杰,李庆刚,王钦宏. 原儿茶酸脱羧关键酶挖掘改造优化儿茶酚生物合成[J]. 生物工程学报, 2024, 40(9): 3057-3071

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 846
  • HTML阅读次数: 556
  • 引用次数: 0
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-04-10
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第5991277位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司