一种新型聚酰胺水解酶的鉴定和性质分析
作者:
基金项目:

国家重点研发计划(2021YFC2103600);国家自然科学基金(32371530)


Identification and characterization of a novel polyamide hydrolase
Author:
  • ZHENG Zhiran

    ZHENG Zhiran

    School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China;National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CONG Lin

    CONG Lin

    School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China;National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Zhishuai

    LI Zhishuai

    National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China 4 University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Weidong

    LIU Weidong

    National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China 4 University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YOU Song

    YOU Song

    School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAN Xu

    HAN Xu

    National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China 4 University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    不可自然降解塑料的广泛应用对生态环境的危害日益严峻,塑料高聚物污染物已成为生态环境治理的焦点,其中利用酶等生物法对高聚物进行解聚具有一定优势,不仅反应条件温和,解聚产物还可以进行回收进入再循环。本研究使用4-硝基丙酰苯胺为模式底物,对实验室建立的塑料解聚酶库进行筛选,获得了一个来源于红色亚栖热菌(Meiothermus ruber)的能水解酰胺键的α/β水解酶MrABH,将其在大肠杆菌中进行表达,并利用亲和层析技术纯化获得了纯度较高的酶,对其催化性质、酶学性质以及催化聚酰胺的产物进行了研究,发现MrABH在pH 8.0–10.0都有良好的稳定性,其最适pH为9.0,最适温度为30 ℃;动力学分析表明其对酯键和酰胺键的催化效果相近,MrABH能解聚尼龙6 (polyamide 6, PA6)和尼龙66 (polyamide 66, PA66)生成单体和寡聚物,未来有望应用于聚酰胺的生物解聚和再循环利用。

    Abstract:

    The widespread use of non-naturally degradable plastics is causing increasingly serious harm to the environment. Reducing plastic pollutants has become the core of ecological and environment management. Biological methods such as enzymes demonstrate advantages in depolymerizing plastics with mild reaction conditions and recycling of depolymerization products. However, there are few reports on the biological depolymerization of polyamide plastics. In this study, by using 4-nitropropionanilide as the model substrate, we screened against our plastic depolymerase library and obtained a Meiothermus ruber-derived enzyme (MrABH) that can hydrolyze the polyamide bond. We expressed this enzyme in Escherichia coli and purified the protein by affinity chromatography. Furthermore, we investigated the catalytic properties, enzymatic properties, and catalytic products of this enzyme with polyamide as the substrate. MrABH had good stability at pH 8.0–10.0, with the optimal performance at pH 9.0 and 30 ℃. The catalytic performance of this enzyme for ester bonds and amide bonds was similar. MrABH can catalyze the depolymerization of PA6 and PA66 to produce monomers and oligomers, demonstrating the potential to be used in the depolymerization and recycling of polyamide.

    参考文献
    [1] MATTHIES P, SEYDL WF. History and development of nylon 6[C]//Seymour RB, Kirshenbaum GS. High Performance Polymers: Their Origin and Development. Dordrecht: Springer, 1986: 39-53.
    [2] KOHAN MELVIN I. The history and development of nylon-66[C]//SEYMOUR RB, KIRSHENBAUM GS. High Performance Polymers: Their Origin and Development. Dordrecht: Springer, 1986: 19-37.
    [3] NEGORO S, KATO DI, OHKI T, YASUHIRA K, KAWASHIMA Y, NAGAI K, TAKEO M, SHIBATA N, KAMIYA K, SHIGETA Y. Structural and functional characterization of nylon hydrolases[M]. Methods in Enzymology. New York: Academic Press. 2021, 648: 357-389.
    [4] DASGUPTA S, HAMMOND WB, GODDARD WA. Crystal structures and properties of nylon polymers from theory[J]. Journal of the American Chemical Society, 1996, 118(49): 12291-12301.
    [5] DEOPURA B, ALAGIRUSAMY R, JOSHI M, GUPTA B. Polyesters and Polyamides[M]. Oxford: Woodhead Publishing, 2008: 419-592.
    [6] SONG YN, MA RJ, XU L, HUANG HD, YAN DX, XU JZ, ZHONG GJ, LEI J, LI ZM. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41637-41644.
    [7] PANT HR, KIM HJ, BHATT LR, JOSHI MK, KIM EK, KIM JI, ABDAL-HAY A, HUI KS, KIM CS. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications[J]. Applied Surface Science, 2013, 285: 538-544.
    [8] SAHA S, KUMAR V, RENCHECK ML, TEKINALP H, KNOUFF B, BLANCHARD P, YOON J, COPENHAVER K, HASSEN AA, WANG H, MAHURIN SM, JAYANTHI K, KUNC V. Development of multifunctional nylon 6,6-based nanocomposites with high electrical and thermal conductivities by scalable melt and dry blending methods for automotive applications[J]. Materials Today Communications, 2024, 38: 107657.
    [9] SINGH S, PAHSHA E, KALLA P. Investigations on GUJCON-CRF nylon 6 fiber based cement concrete for pavement[J]. Materials Today: Proceedings, 2023, 3: 1-7.
    [10] FAIRGRIEVE S. Nylon degradation: problems and opportunities[J]. Plastics Engineering, 2008, 64(7): 34-42.
    [11] TOMASINI A, LEÓN-SANTIESTEBAN HH. Nylon Uses in Biotechnology[M]. Biocomposites. Amsterdam: Elsevier, 2015: 319-346.
    [12] LEBRETON L, SLAT B, FERRARI F, SAINTE-ROSE B, AITKEN J, MARTHOUSE R, HAJBANE S, CUNSOLO S, SCHWARZ A, LEVIVIER A, NOBLE K, DEBELJAK P, MARAL H, SCHOENEICH- ARGENT R, BRAMBINI R, REISSER J. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic[J]. Scientific Reports, 2018, 8: 4666.
    [13] LEAR G, KINGSBURY JM, FRANCHINI S, GAMBARINI V, MADAY SDM, WALLBANK JA, WEAVER L, PANTOS O. Plastics and the microbiome: impacts and solutions[J]. Environmental Microbiome, 2021, 16(1): 2.
    [14] PENG C, HE N, WU YH, LU Y, SUN HW, WANG L. Excretion characteristics of nylon microplastics and absorption risk of nanoplastics in rats[J]. Ecotoxicology and Environmental Safety, 2022, 238: 113586.
    [15] ZHENG XW, LIU XL, ZHANG LL, WANG ZM, YUAN Y, LI J, LI YY, HUANG HH, CAO X, FAN ZQ. Toxicity mechanism of nylon microplastics on Microcystis aeruginosa through three pathways: photosynthesis, oxidative stress and energy metabolism[J]. Journal of Hazardous Materials, 2022, 426: 128094.
    [16] ARNAL G, ANGLADE J, GAVALDA S, TOURNIER V, CHABOT N, BORNSCHEUER UT, WEBER G, MARTY A. Assessment of four engineered PET degrading enzymes considering large-scale industrial applications[J]. ACS Catalysis, 2023, 13(20): 13156-13166.
    [17] BELL EL, SMITHSON R, KILBRIDE S, FOSTER J, HARDY FJ, RAMACHANDRAN S, TEDSTONE AA, HAIGH SJ, GARFORTH AA, DAY PJR, LEVY C, SHAVER MP, GREEN AP. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5: 673-681.
    [18] CASTRO-RODRÍGUEZ JA, RODRÍGUEZ-SOTRES R, FARRÉS A. Determinants for an efficient enzymatic catalysis in poly(ethylene terephthalate) degradation[J]. Catalysts, 2023, 13(3): 591.
    [19] SULAIMAN S, YAMATO S, KANAYA E, KIM JJ, KOGA Y, TAKANO K, KANAYA S. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(5): 1556-1562.
    [20] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉI, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580: 216-219.
    [21] ALMANSA E, HEUMANN S, EBERL A, KAUFMANN F, CAVACO-PAULO A, GÜBITZ GM. Surface hydrolysis of polyamide with a new polyamidase from Beauveriabrongniartii[J]. Biocatalysis and Biotransformation, 2008, 26(5): 371-377.
    [22] HEUMANN S, EBERL A, FISCHER-COLBRIE G, POBEHEIM H, KAUFMANN F, RIBITSCH D, CAVACO-PAULO A, GUEBITZ GM. A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide[J]. Biotechnology and Bioengineering, 2009, 102(4): 1003-1011.
    [23] YASUHIRA K, SHIBATA N, MONGAMI G, UEDO Y, ATSUMI Y, KAWASHIMA Y, HIBINO A, TANAKA Y, LEE YH, KATO DI, TAKEO M, HIGUCHI Y, NEGORO S. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation[J]. The Journal of Biological Chemistry, 2010, 285(2): 1239-1248.
    [24] NEGORO S, KAWASHIMA Y, SHIBATA N, KOBAYASHI T, BABA T, LEE YH, KAMIYA K, SHIGETA Y, NAGAI K, TAKEHARA I, KATO DI, TAKEO M, HIGUCHI Y. Mutations affecting the internal equilibrium of the reaction catalyzed by 6-aminohexanoate-dimer hydrolase[J]. FEBS Letters, 2016, 590(18): 3133-3143.
    [25] NEGORO S, SHIBATA N, TANAKA Y, YASUHIRA K, SHIBATA H, HASHIMOTO H, LEE YH, OSHIMA S, SANTA R, OSHIMA S, MOCHIJI K, GOTO Y, IKEGAMI T, NAGAI K, KATO DI, TAKEO M, HIGUCHI Y. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis[J]. The Journal of Biological Chemistry, 2012, 287(7): 5079-5090.
    [26] QUARTINELLO F, SUBAGIA R, ZITZENBACHER S, REICH J, VIELNASCHER R, BECHER E, HALL M, RIBITSCH D, GUEBITZ GM. Dihydropyrimidinase from Saccharomyces kluyveri can hydrolyse polyamides[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1158226.
    [27] NOMURA N, DEGUCHI T, SHIGENO-AKUTSU Y, NAKAJIMA-KAMBE T, NAKAHARA T. Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane[J]. Biotechnology & Genetic Engineering Reviews, 2001, 18: 125-147.
    [28] FRIEDRICH J, ZALAR P, MOHORCIC M, KLUN U, KRZAN A. Ability of fungi to degrade synthetic polymer nylon-6[J]. Chemosphere, 2007, 67(10): 2089-2095.
    [29] Von HAUGWITZ G, HAN X, PFAFF L, LI Q, WEI HL, GAO J, METHLING K, AO YF, BRACK Y, MICAN J, FEILER CG, WEISS MS, BEDNAR D, PALM GJ, LALK M, LAMMERS M, DAMBORSKY J, WEBER G, LIU WD, BORNSCHEUER UT, WEI R. Structural insights into (tere)phthalate-ester hydrolysis by a carboxylesterase and its role in promoting PET depolymerization[J]. ACS Catalysis, 2022, 12(24): 15259-15270.
    [30] PFAFF L, GAO J, LI ZS, JÁCKERING A, WEBER G, MICAN J, CHEN YP, DONG WL, HAN X, FEILER CG, AO YF, BADENHORST CPS, BEDNAR D, PALM GJ, LAMMERS M, DAMBORSKY J, STRODEL B, LIU WD, BORNSCHEUER UT, WEI R. Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase[J]. ACS Catalysis, 2022, 12(15): 9790-9800.
    [31] CHEN CC, HAN X, LI X, JIANG PC, NIU D, MA LX, LIU WD, LI SY, QU YY, HU HB, MIN J, YANG Y, ZHANG LL, ZENG W, HUANG JW, DAI LH, GUO RT. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis[J]. Nature Catalysis, 2021, 4: 425-430.
    [32] CHEN CC, HAN X, KO TP, LIU WD, GUO RT. Structural studies reveal the molecular mechanism of PETase[J]. The FEBS Journal, 2018, 285(20): 3717-3723.
    [33] HAN X, LIU WD, HUANG JW, MA JT, ZHENG YY, KO TP, XU LM, CHENG YS, CHEN CC, GUO RT. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8: 2106.
    [34] LIU JW, XIN KY, ZHANG TY, WEN Y, LI D, WEI R, ZHOU J, CUI ZL, DONG WL, JIANG M. Identification and characterization of a fungal cutinase-like enzyme CpCut1 from Cladosporium sp. P7 for polyurethane degradation[J]. Applied and Environmental Microbiology, 2024, 90(4): e0147723.
    [35] Di BISCEGLIE F, QUARTINELLO F, VIELNASCHER R, GUEBITZ GM, PELLIS A. Cutinase-catalyzed polyester-polyurethane degradation: elucidation of the hydrolysis mechanism[J]. Polymers, 2022, 14(3): 411.
    [36] SCHMIDT J, WEI R, OESER T, SILVA LADE, BREITE D, SCHULZE A, ZIMMERMANN W. Degradation of polyester polyurethane by bacterial polyester hydrolases[J]. Polymers, 2017, 9(2): 65.
    [37] WEI R, OESER T, THEN J, KÜHN N, BARTH M, SCHMIDT J, ZIMMERMANN W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata[J]. AMB Express, 2014, 4: 44.
    [38] HOWARD GT, MACKIE RI, CANN IKO, OHENE-ADJEI S, ABOUDEHEN KS, DUOS BG, CHILDERS GW. Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster[J]. Journal of Applied Microbiology, 2007, 103(6): 2074-2083.
    [39] GAUTAM R, BASSI AS, YANFUL EK. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium[J]. Biotechnology Letters, 2007, 29(7): 1081-1086.
    [40] NAKAJIMA-KAMBE T, ONUMA F, AKUTSU Y, NAKAHARA T. Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35[J]. Journal of Fermentation and Bioengineering, 1997, 83(5): 456-460.
    [41] VEGA RE, MAIN T, HOWARD GT. Cloning and expression in Escherichia coli of apolyurethane- degrading enzyme from Pseudomonas fluorescens[J]. International Biodeterioration & Biodegradation, 1999, 43(1/2): 49-55.
    [42] MAGNIN A, POLLET E, PERRIN R, ULLMANN C, PERSILLON C, PHALIP V, AVÉROUS L. Enzymatic recycling of thermoplastic polyurethanes: synergistic effect of an esterase and an amidase and recovery of building blocks[J]. Waste Management, 2019, 85: 141-150.
    [43] SILVA C, ARAÜJO R, CASAL M, GÜBITZ GM, CAVACO-PAULO A. Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates[J]. Enzyme and Microbial Technology, 2007, 40(7): 1678-1685.
    [44] ARAÜJO R, SILVA C, O’NEILL A, MICAELO N, GUEBITZ G, SOARES CM, CASAL M, CAVACO- PAULO A. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers[J]. Journal of Biotechnology, 2007, 128(4): 849-857.
    [45] BIUNDO A, SUBAGIA R, MAURER M, RIBITSCH D, SYRÉN PO, GUEBITZ GM. Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering[J]. RSC Advances, 2019, 9(62): 36217-36226.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑芷然,丛琳,李志帅,刘卫东,游松,韩旭. 一种新型聚酰胺水解酶的鉴定和性质分析[J]. 生物工程学报, 2024, 40(9): 3103-3113

复制
分享
文章指标
  • 点击次数:141
  • 下载次数: 597
  • HTML阅读次数: 595
  • 引用次数: 0
历史
  • 收稿日期:2024-02-05
  • 最后修改日期:2024-05-28
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6020221位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司