代谢工程改造大肠杆菌从头合成1,4-丁二醇
作者:
基金项目:

国家自然科学基金(32370040, 32100055);江苏省自然科学基金(BK20221537);江苏高校优势学科建设工程项目和江苏高校品牌专业建设工程项目


Metabolic engineering of Escherichia coli for de novo synthesis of 1,4-butanediol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    1,4-丁二醇是一种重要的中间体,广泛应用于化工、农业、医药等领域。本研究将酶工程和代谢工程相结合,构建了一条以葡萄糖为底物生产1,4-丁二醇的新途径。首先,通过数据库挖掘设计了一条包含α-酮酸脱羧酶(α-ketoglutarate decarboxylase, SucA)、羧酸还原酶(carboxylate reductase, Car)、乙醇脱氢酶(alcohol dehydrogenase, YqhD)的新型催化途径,引入底盘细胞W3110 (K-12)后,实现了1,4-丁二醇的从头合成。为进一步提高该路径的合成效率,敲除了乳酸脱氢酶(lactate dehydrogenase A, LdhA)、丙酮酸甲酸裂解酶(pyruvate formate lyase B, PflB)基因,阻断旁路代谢途径;强化表达柠檬酸合酶(citrate synthase, GltAR163L),增加α-酮戊二酸代谢通量;强化底盘细胞中关键辅酶NADPH合成量并替换强启动子强化sucAcaryqhD基因表达量,改善了1,4-丁二醇合成前体的供给效率。最终,重组菌株摇瓶发酵48 h最高合成770 mg/L的1,4-丁二醇,在5 L发酵罐上发酵60 h ,1,4-丁二醇产量达4.22 g/L,得率为12.46 mg/g葡萄糖。本研究设计了一条新的1,4-丁二醇从头合成路径,与已报道的路径相比,该路径无需乙酰辅酶A参与,避免了副产物乙酸的积累,同时避免了氨的添加,为代谢工程改造生产1,4-丁二醇及其高附加值衍生产品提供了一种新的思路。

    Abstract:

    1,4-butanediol is an important intermediate widely used in chemical, agricultural, and pharmaceutical industries. This study constructed a new short path for the production of 1,4-butanediol with glucose as the substrate by combining enzyme engineering and metabolic engineering. Firstly, a novel path catalyzed by α-ketoglutarate decarboxylase (SucA), carboxylate reductase (Car), and alcohol dehydrogenase (YqhD) was designed by database mining, and the de novo synthesis of 1,4-butanediol was achieved after introduction of the path into Escherichia coli W3110 (K-12) chassis cells. To further improve the synthesis efficiency of this path, we deleted the genes encoding lactate dehydrogenase A (LdhA) and pyruvate formate lyase B (PflB) to block the metabolic bypass. Furthermore, the expression of citrate synthase (GltAR163L) was up-regulated to increase the α-ketoglutarate metabolic flux. In addition, we improved the synthesis of the key cofactor NADPH and up-regulated the expression of sucA, car, and yqhD by substituting with strong promoters to increase the efficiency of supplying precursors to 1,4-butanediol synthesis. Eventually, the recombinant strain produced up to 770 mg/L of 1,4-butanediol within 48 h in a shake flask, and 4.22 g/L of 1,4-butanediol within 60 h in a 5 L fermenter with a yield of 12.46 mg/g glucose. Compared with the previously reported method, the novel path designed in this study for the de novo synthesis of 1,4-butanediol does not need acetyl coenzyme A and avoids the byproduct acetate or the addition of ammonia. Therefore, the outcome is expected to provide a new idea for the metabolic engineering of microbial chassis for the production of 1,4-butanediol and its high-value derivatives.

    参考文献
    [1] LI KF, YANG JM, SONG TY, ZHU ZR, ZHAO C, WU P, LI XH. Synthesis of bio-derived 1,4-butanediol by succinic acid esterification and hydrogenation over CuFeAl catalysts[J]. Green Chemistry, 2023, 25(2): 627-638.
    [2] NORHAFINI H, THINAGARAN L, SHANTINI K, HUONG KH, SYAFIQ IM, BHUBALAN K, AMIRUL AA. Synthesis of poly(3-hydroxybutyrate-co-4- hydroxybutyrate) with high 4HB composition and PHA content using 1,4-butanediol and 1,6-hexanediol for medical application[J]. Journal of Polymer Research, 2017, 24(11): 189.
    [3] LIU HW, LU T. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli[J]. Metabolic Engineering, 2015, 29: 135-141.
    [4] LI WJ, NARANCIC T, KENNY ST, NIEHOFF PJ, O’CONNOR K, BLANK LM, WIERCKX N. Unraveling 1,4-butanediol metabolism in Pseudomonas putida KT2440[J]. Frontiers in Microbiology, 2020, 11: 382.
    [5] MEHRABIAN M, KARGARI A. Bio-based nonporous membranes: evolution and benchmarking review[J]. Journal of Industrial and Engineering Chemistry, 2023, 124: 17-39.
    [6] CHENG J, FAN WX, ZHENG LG. Changes in biomass, photosynthetic efficiency, and total lipid content of Nannochloropsis oculata in response to metabolic intermediates and antioxidant[J]. Biomass Conversion and Biorefinery, 2023, 13(6): 5035-5042.
    [7] LI FB, LU T, CHEN BF, HUANG ZJ, YUAN GQ. Pt nanoparticles over TiO2-ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol[J]. Applied Catalysis A: General, 2014, 478: 252-258.
    [8] CHENG J, LI J, ZHENG LG. Achievements and perspectives in 1,4-butanediol production from engineered microorganisms[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10480-10485.
    [9] YIM H, HASELBECK R, NIU W, PUJOL-BAXLEY C, BURGARD A, BOLDT J, KHANDURINA J, TRAWICK JD, OSTERHOUT RE, STEPHEN R, ESTADILLA J, TEISAN S, SCHREYER HB, ANDRAE S, YANG TH, LEE SY, BURK MJ, van DIEN S. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J]. Nature Chemical Biology, 2011, 7: 445-452.
    [10] BARTON NR, BURGARD AP, BURK MJ, CRATER JS, OSTERHOUT RE, PHARKYA P, STEER BA, SUN J, TRAWICK JD, van DIEN SJ, YANG TH, YIM H. An integrated biotechnology platform for developing sustainable chemical processes[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(3): 349-360.
    [11] LEE SY, KIM HU. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33: 1061-1072.
    [12] BURGARD A, BURK MJ, OSTERHOUT R, van DIEN S, YIM H. Development of a commercial scale process for production of 1,4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125.
    [13] AMARAL PFF, FERREIRA TF, FONTES GC, COELHO MAZ. Glycerol valorization: new biotechnological routes[J]. Food and Bioproducts Processing, 2009, 87(3): 179-186.
    [14] MIKLÓSSY I, BODOR Z, SINKLER R, ORBÁN KC, LÁNYI S, ALBERT B. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli[J]. Journal of Biomolecular Structure & Dynamics, 2017, 35(9): 1874-1889.
    [15] TAI YS, XIONG MY, JAMBUNATHAN P, WANG JY, WANG JL, STAPLETON C, ZHANG KC. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products[J]. Nature Chemical Biology, 2016, 12: 247-253.
    [16] WANG J, JAIN R, SHEN XL, SUN XX, CHENG MY, LIAO JC, YUAN QP, YAN YJ. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose[J]. Metabolic Engineering, 2017, 40: 148-156.
    [17] WANG J, LI CY, ZOU YS, YAN YJ. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19159-19167.
    [18] KIM HS, KIM SB, PARK SH, OH HM, PARK YI, KIM CK, KATSURAGI T, TANI Y, YOON BD. Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis[J]. Biotechnology Letters, 2000, 22(18): 1431-1436.
    [19] 孟玲宁, 刘锦燕, 赵悦, 吕婕, 林伊静, 项明洁. 磷酸泛酰巯基乙胺基转移酶在真菌和细菌的研究进展[J]. 中国真菌学杂志, 2018, 13(5): 305-308. MENG LN, LIU JY, ZHAO Y, LV J, LIN YJ, XIANG MJ. Phosphopantetheinyl transferases in fungi and bacteria research[J]. Chinese Journal of Mycology, 2018, 13(5): 305-308(in Chinese).
    [20] ZHAO M, HUANG DX, ZHANG XJ, KOFFAS MAG, ZHOU JW, DENG Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47: 254-262.
    [21] 殷志敏, 贾志奇, 赵永祥, 杨巧珍. 气相色谱法测定1,4-丁二醇及其酯化产物含量[J]. 化学与生物工程, 2014, 31(6): 70-72, 78. YIN ZM, JIA ZQ, ZHAO YX, YANG QZ. Determination of 1,4-butanediol and its esterification products by gas chromatography[J]. Chemistry & Bioengineering, 2014, 31(6): 70-72, 78(in Chinese).
    [22] STOKELL D J, DONALD L J, MAURUS R. Probing the roles of key residues in the unique regulatory NADH binding site of type Ⅱ citrate synthase of Escherichia coli[J]. Journal of Biological Chemistry, 2003, 278(37): 35435-35443.
    [23] LIM SJ, JUNG YM, SHIN HD. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon[J]. Bioscience and Bioengineering, 2002, 93(6): 543-549.
    [24] CHOI JC, SHIN HD, LEE YH. Modulation of 3-hydroxyvalerate molar fraction in poly (3-hydroxybutyrate-3-hydroxyvalerate) using Ralstonia eutropha transformant co-amplifying phbC and NADPH generation-related zwf genes[J]. Enzyme and Microbial Technology, 2003, 32(1): 178-185.
    [25] HE L, GROOM JD, LIDSTROM ME. The entner- doudoroff pathway is an essential metabolic route for Methylotuvimicrobium buryatense 5GB1C[J]. Applied and Environmental Microbiology, 2021, 87(3): e02481-20.
    [26] COK B, TSIROPOULOS I, ROES AL, PATEL MK. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(1): 16-29.
    [27] THAKUR S, CHAUDHARY J, SINGH P, ALSANIE WF, GRAMMATIKOS SA, THAKUR VK. Synthesis of bio-based monomers and polymers using microbes for a sustainable bioeconomy[J]. Bioresource Technology, 2022, 344: 126156.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜君逸,郭艺鸣,杨套伟,饶志明. 代谢工程改造大肠杆菌从头合成1,4-丁二醇[J]. 生物工程学报, 2024, 40(9): 3142-3157

复制
分享
文章指标
  • 点击次数:245
  • 下载次数: 686
  • HTML阅读次数: 620
  • 引用次数: 0
历史
  • 收稿日期:2024-01-03
  • 最后修改日期:2024-02-19
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第5998284位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司