Abstract:L-tryptophan is an indispensable essential amino acid with a wide range of applications, which leads to a high demand. Accordingly, the production of L-tryptophan becomes a much-anticipated direction in research and industrial development. While irrational mutagenesis is an effective means to breed industrial strains, how to screen the strains with desirable phenotypes is still a major challenge. In order to improve the efficiency and accuracy of screening L-tryptophan high-yield strains, we used atmospheric and room temperature plasma mutagenesis to construct a random mutant library and then combined it with high-throughput screening in deep-well plates. Using a pseudo-fluorescent protein sensor capable of responding specifically to L-tryptophan, we successfully screened out a strain producing L-tryptophan at a high yield from a random mutagenesis library. The fermentation with the strain in shake flasks produced L-tryptophan at a yield of 1.99 g/L, which was 41.77% higher than that of the starting strain. Finally, the mechanism of high yield of the strain was deciphered by comparative genomics and transcriptomics. The above strategies provide a solid research foundation for further selection and development of high quality L-tryptophan producing strains.