一株新型广谱肠侵袭性大肠杆菌噬菌体ΦEP1生物学特性及基因组分析
作者:
基金项目:

浙江省“三农九方”科技协作计划(2023SNJF051);嘉兴市科技计划(2021AY10050);现代食品安全与营养协同创新中心(3090JYN9922001G-018)


Biological and genome characteristics of a novel broad host-range phage ΦEP1 infecting enteroinvasive Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了给肠侵袭性大肠杆菌(enteroinvasive Escherichia coli, EIEC)的预防与治疗提供资源和参考,对EIEC噬菌体进行生物学特性和基因组分析。以实验室冻存的EIEC为宿主菌,从浙江湖州某养鸡场的环境污水样品中分离得到一株噬菌体,命名为ΦEP1。采用双层琼脂平板法测定噬菌体的效价以及最佳感染复数、一步生长曲线、温度、pH值、氯仿和胆盐敏感性等生物学特性,对噬菌体进行透射电镜检查以观察其形态,测试其在不同食品基质中的生物防治效果以及对Caco-2细胞的保护作用。结果表明,ΦEP1的最佳感染复数为0.1,效价为1.3×1010 PFU/mL。噬菌体对温度、pH、氯仿以及胆盐的耐受性均较强,具有较广的裂解谱,对多株不同血清型的多重耐药致病大肠杆菌和志贺氏菌均表现出裂解活性。噬菌体的潜伏期为10 min,爆发期为80 min,爆发量为48 PFU/cell。透射电镜观察显示噬菌体ΦEP1属于尾病毒目,同时对Caco-2细胞有良好的保护作用。噬菌体ΦEP1的基因组大小为87 182 bp,GC含量为39.80%,含有128个推定的开放阅读框(open reading frame, ORF),不含耐药基因和毒力因子。ΦEP1能显著抑制人工污染牛奶和牛肉中EIEC的增长,在细胞保护性实验中能有效消杀EIEC,显著提高Caco-2细胞的存活率,减少细胞因子白细胞介素6 (interleukin-6, IL-6)和白细胞介素1β (interleukin-1β, IL-1β)的表达,使得炎症水平下调。本研究所得的肠侵袭性大肠杆菌噬菌体效价较高,对环境的耐受性较强,为噬菌体在食品保鲜等领域应用提供依据。

    Abstract:

    We analyzed the biological and genome characteristics of a phage infecting enteroinvasive Escherichia coli (EIEC), aiming to provide resources and a reference for the prevention and treatment of EIEC. With the EIEC preserved in our laboratory as the host bacterium, one strain of phage was isolated from the effluent sample from a chicken farm in Huzhou, Zhejiang and named ΦEP1. The titer, optimal multiplicity of infection, one-step growth curve, temperature, pH value, chloroform and bile salt sensitivity of ΦEP1 were determined by the double-layer agar plate method. The morphology of the phage was observed by transmission electron microscopy. The biocontrol effects of ΦEP1 in different food matrixes and the protective effect of this phage on Caco-2 cells were tested. The phage ΦEP1 showed the optimal multiplicity of infection of 0.1, the titer of 1.3×1010 PFU/mL, strong tolerance to temperature, pH, chloroform, and bile salt, and a broad host spectrum. Furthermore, it expressed lysis activity against multiple strains of multiple antibiotic-resistant pathogenic E. coli and Shigella with different serotypes. Phage ΦEP1 had an incubation period of 10 min, an outbreak period of 80 min, and an outbreak volume of 48 PFU/cell. According to the morphology observed by transmission electron microscopy, phage ΦEP1 belonged to the order of Caudovirales, and it had a good protective effect on Caco-2 cells. Phage ΦEP1 had a genome of 87 182 bp with the GC content of 39.80%, 128 putative open reading frames, and no antibiotic resistance genes or virulence genes. ΦEP1 inhibited the growth of EIEC in artificially contaminated milk and beef and eliminated EIEC in cell protection experiments. It significantly increased the survival rate of Caco-2 cells and down-regulated the expression of interleukin (IL)-6 and IL-1β to reduce inflammation. We obtained an EIEC-targeting phage ΦEP1 with a high titer and strong tolerance to the environment, which provided a basis for the application of phages in food preservation and other fields.

    参考文献
    [1] 黄倩妮, 陶媛美慧, 黄虞远, 濮吉, 罗雪莲, 金东, 杨晶, 徐建国. 一株新型旱獭源性宽谱大肠杆菌噬菌体的分离鉴定及基因组分析[J]. 微生物学报, 2022, 62(9): 3503-3517. HUANG QN, TAO YMH, HUANG YY, PU J, LUO XL, JIN D, YANG J, XU JG. Characterization and complete genomic analysis of a novel broad host-range Escherichia coli phage isolated from Marmota himalayana[J]. Acta Microbiologica Sinica, 2022, 62(9): 3503-3517(in Chinese).
    [2] FUSCO A, SAVIO V, PERFETTO B, MATTINA R, DONNARUMMA G. Antimicrobial peptide human β-defensin-2 improves in vitro cellular viability and reduces pro-inflammatory effects induced by enteroinvasive Escherichia coli in Caco-2 cells by inhibiting invasion and virulence factors’ expression[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1009415.
    [3] MICHELACCI V, TOZZOLI R, ARANCIA S, D’ANGELO A, BONI A, KNIJN A, PROSSEDA G, GREIG DR, JENKINS C, CAMOU T, SIROK A, NAVARRO A, SCHELOTTO F, VARELA G, MORABITO S. Tracing back the evolutionary route of enteroinvasive Escherichia coli (EIEC) and Shigella through the example of the highly pathogenic O96:H19 EIEC clone[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 260.
    [4] MILES SL, TORRACA V, DYSON ZA, LÓPEZ-JIMÉNEZ AT, FOSTER-NYARKO E, LOBATO-MÁRQUEZ D, JENKINS C, HOLT KE, MOSTOWY S. Acquisition of a large virulence plasmid (pINV) promoted temperature-dependent virulence and global dispersal of O96:H19 enteroinvasive Escherichia coli[J]. mBio, 2023, 14(4): e0088223.
    [5] PASQUA M, MICHELACCI V, Di MARTINO ML, TOZZOLI R, GROSSI M, COLONNA B, MORABITO S, PROSSEDA G. The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity[J]. Frontiers in Microbiology, 2017, 8: 2390.
    [6] BYRNE L, KAINDAMA L, BENTLEY M, JENKINS C, AIRD H, OLIVER I, PARANTHAMAN K, TEAM IM. Investigation into a national outbreak of STEC O157:H7 associated with frozen beef burgers, UK, 2017[J]. Epidemiology and Infection, 2020, 148: e215.
    [7] CASTELLANO P, BELFIORE C, VIGNOLO G. Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties[J]. Food Control, 2011, 22(8): 1461-1465.
    [8] GOBIN M, HAWKER J, CLEARY P, INNS T, GARDINER D, MIKHAIL A, McCORMICK J, ELSON R, READY D, DALLMAN T, RODDICK I, HALL I, WILLIS C, CROOK P, GODBOLE G, TUBIN-DELIC D, OLIVER I. National outbreak of Shiga toxin-producing Escherichia coli O157:H7 linked to mixed salad leaves, United Kingdom, 2016[J]. Euro Surveillance, 2018, 23(18): 17-00197.
    [9] JENKINS C, DALLMAN TJ, LAUNDERS N, WILLIS C, BYRNE L, JORGENSEN F, EPPINGER M, ADAK GK, AIRD H, ELVISS N, GRANT KA, MORGAN D, McLAUCHLIN J. Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress[J]. Applied and Environmental Microbiology, 2015, 81(12): 3946-3952.
    [10] LAUNDERS N, LOCKING ME, HANSON M, WILLSHAW G, CHARLETT A, SALMON R, COWDEN J, HARKER KS, ADAK GK. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes[J]. Epidemiology and Infection, 2016, 144(1): 171-181.
    [11] TREACY J, JENKINS C, PARANTHAMAN K, JORGENSEN F, MUELLER-DOBLIES D, ANJUM M, KAINDAMA L, HARTMAN H, KIRCHNER M, CARSON T, KAR-PURKAYASTHA I. Outbreak of Shiga toxin-producing Escherichia coli O157:H7 linked to raw drinking milk resolved by rapid application of advanced pathogen characterisation methods, England, August to October 2017[J]. Euro Surveillance, 2019, 24(16): 1800191.
    [12] 张天宁, 李文阳, 董鹏程, 毛衍伟, 杨啸吟, 罗欣, 朱立贤. 市售肉品产志贺毒素大肠杆菌污染情况与耐药性分析: 以泰安市为例[J]. 中国动物传染病学报, 2022: 1-11. ZHANG TN, LI WY, DONG PC, MAO YW, YANG XY, LUO X, ZHU LX. Prevalence and antibiotic resistance of Shiga toxin-producing Escherichia coli isolated from retail meat products sold in Tai’an Shandong Province[J]. Chinese Journal of Animal Infectious Diseases, 2022: 1-11(in Chinese).
    [13] KIM HJ, KIM YT, KIM HB, CHOI SH, LEE JH. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases[J]. Food Microbiology, 2021, 94: 103630.
    [14] 李陇平. 裂解酶对食源性病原菌的生物防治研究及应用[J]. 食品与生物技术学报, 2019, 38(12): 142-149. LI LP. Research progress of lysins for biocontrol of foodborne pathogens and its applications[J]. Journal of Food Science and Biotechnology, 2019, 38(12): 142-149(in Chinese).
    [15] 温慧, 刘婷, 陈忠军, 满都拉, 孙子羽. 沙门氏菌噬菌体ΦSHDA-1生物学特性及基因组学初步研究[J]. 食品与生物技术学报, 2020, 39(11): 96-103. WEN H, LIU T, CHEN ZJ, MANDLAA, SUN ZY. A preliminary study on the characteristics and genomics analysis of Salmonella phage ΦSHDA-1[J]. Journal of Food Science and Biotechnology, 2020, 39(11): 96-103(in Chinese).
    [16] LI JJ, LI YM, DING YF, HUANG CX, ZHANG Y, WANG J, WANG XH. Characterization of novel Siphoviridae Salmonella bacteriophage T156 and its microencapsulation application in food matrix[J]. Food Research International, 2021, 140: 110004.
    [17] LITTLE JS, DEDRICK RM, FREEMAN KG, CRISTINZIANO M, SMITH BE, BENSON CA, JHAVERI TA, BADEN LR, SOLOMON DA, HATFULL GF. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection[J]. Nature Communications, 2022, 13: 2313.
    [18] PETROVIC FABIJAN A, LIN RCY, HO J, MADDOCKS S, BEN ZAKOUR NL, IREDELL JR, KHALID A, VENTURINI C, CHARD R, MORALES S, SANDARADURA I, GILBEY T, TEAM WBT. Safety of bacteriophage therapy in severe Staphylococcus aureus infection[J]. Nature Microbiology, 2020, 5: 465-472.
    [19] 宋召军. 空肠弯曲菌噬菌体的分离鉴定及其初步应用[D]. 扬州: 扬州大学硕士学位论文, 2018. SONG ZJ. Isolation, identification and preliminary application of Campylobac潴汥潲朠祪???の???????????????????敵???扡牳?孥??嵳???????????坙佡?卧??乯????????啳剩?佹?吠?到??刨????奨?剮?女???啢?伾???????呐???至?が?剏??啄??丠???佄???呒??匠?????呁??????丬?剃????偓?????????????乴乨??乨????乬???啣????剥?匠????偮桴慥杲敬?偵慫物楮搭收?捩慮渠?歵業污汮?摤潩牳浥慡湳瑥??慝渮琠楁扮楮潡瑬楳挠?瑦漠汉敮牴慥湲瑮?捬攠汍汥獤?潣晩?健猬攠由搹漹洸漬渠愱猲?愨攲爩町朠椱渲漷猭愱″户礮?摢楲爾敛挲琱?氠祊瑏楎捅?爠敓灁氬椠捊慅瑎楋潉湎孓?嵂??丠慒瑥畣牥敮??潩浮浳畩湧楨捴慳琠楩潮湴獯???ひ????????????L-6 cytokine family in inflammatory diseases and cancer[J]. Nature Reviews Immunology, 2018, 18: 773-789.
    [22] REILLY N, POYLIN V, MENCONI M, ONDERDONK A, BENGMARK S, HASSELGREN PO. Probiotics potentiate IL-6 production in IL-1beta-treated Caco-2 cells through heat shock-dependent mechanism[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2007, 293(3): R1169-R1179.
    [23] WEBER A, WASILIEW P, KRACHT M. Interleukin-1β (IL-1β) processing pathway[J]. Science Signaling, 2010, 3(105): e3105cm2.
    [24] 刘悦, 李菁华, 史红艳, 温剑平, 孙延波. 肠出血性大肠埃希菌O157噬菌体的生物学特性[J]. 吉林大学学报(医学版), 2012, 38(1): 79-83. LIU Y, LI JH, SHI HY, WEN JP, SUN YB. Biological characteristics of enterohemorrhagic E. coli O157-specific bacteriophages isolated from raw sewage[J]. Journal of Jilin University (Medicine Edition), 2012, 38(1): 79-83(in Chinese).
    [25] CHANG C, YU XB, GUO WN, GUO CY, GUO XK, LI QT, ZHU YZ. Bacteriophage-mediated control of biofilm: promising new dawn for the future[J]. Frontiers in Microbiology, 2022, 13: 825828.
    [26] PU YY, KE YH, BAI F. Active efflux in dormant bacterial cells–new insights into antibiotic persistence[J]. Drug Resistance Updates, 2017, 30: 7-14.
    [27] PU YY, ZHAO ZL, LI YX, ZOU J, MA Q, ZHAO YN, KE YH, ZHU Y, CHEN HY, BAKER MAB, GE H, SUN YJ, XIE XS, BAI F. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells[J]. Molecular Cell, 2016, 62(2): 284-294.
    [28] ZHENG EJ, VALERI JA, ANDREWS IW, KRISHNAN A, BANDYOPADHYAY P, ANAHTAR MN, HERNEISEN A, SCHULTE F, LINNEHAN B, WONG F, STOKES JM, RENNER LD, LOURIDO S, COLLINS JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria[J]. Cell Chemical Bi
    相似文献
    引证文献
引用本文

何继玮,李宇行,宗帅州,钱敏,张亚茹,张章晟,禹海杰,曲道峰. 一株新型广谱肠侵袭性大肠杆菌噬菌体ΦEP1生物学特性及基因组分析[J]. 生物工程学报, 2024, 40(9): 3216-3232

复制
分享
文章指标
  • 点击次数:177
  • 下载次数: 530
  • HTML阅读次数: 552
  • 引用次数: 0
历史
  • 收稿日期:2024-02-02
  • 最后修改日期:2024-05-10
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第5991010位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司