水稻籽粒VB6含量的调控位点挖掘及分析
作者:
基金项目:

浙江省自然科学基金重点项目(LZ23C130003);2023年度金华市科技局公益性技术应用研究项目(2023-4-059);浙江省大学生科技创新活动计划暨新苗人才计划(2024R404A037)


Mining and analysis of regulatory loci for VB6 content in rice grains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • | | | |
  • 文章评论
    摘要:

    维生素B6(vitamin B6,VB6)作为参与动植物多项生命活动的重要组成成分,体现了水稻等粮食经济作物的营养品质。目前对于控制水稻籽粒VB6含量的相关基因的挖掘较少且不深入。本研究以‘华占(HZ)’和‘热研2号(Nekken2)’为亲本所构建的重组自交系为材料,在数量性状基因座(quantitative trait loci,QTL)定位的基础上进行候选基因初步筛选,共获得10个候选基因,其中LOC_Os01g52450LOC_Os01g52500LOC_Os05g09500LOC_Os05g09440LOC_Os05g20570LOC_Os05g36270基因的表达量在双亲间差异显著。结合基因表达量和亲本VB6含量数据,推测LOC_Os05g09500是影响水稻籽粒VB6含量的关键基因,其高表达显著影响水稻籽粒VB6含量。本研究填补了水稻籽粒VB6性状QTL定位研究的空白,为进一步阐明水稻VB6合成的分子遗传机理、克隆相关基因提供了理论支持,在鉴定、筛选和培育高VB6含量的水稻新品种方面具有一定意义。

    Abstract:

    Vitamin B6 (VB6), as an essential component involved in numerous biological activities of animals and plants, reflects the nutritional quality of cereal crops such as rice. Few studies have been conducted to mine the genes controlling the VB6 content in rice grains, and the available studies remain to be deepened. In this study, the recombinant inbred lines created from parents ‘HZ’ and ‘Nekken2’ served as the experimental materials. Based on QTL mapping, the initial screening identified ten candidate genes. The expression levels of LOC_Os01g52450, LOC_Os01g52500, LOC_Os05g09500, LOC_Os05g09440, LOC_Os05g20570, and LOC_Os05g36270 showed significant differences between the parents. According to the gene expression and parental VB6 content, we hypothesized LOC_Os05g09500 as the key gene affecting the VB6 content in rice grains, and the high expression of this gene significantly influenced the VB6 content. The results of this study fill a gap in the QTL mapping on the VB6 content of rice grains and provide theoretical support for elucidating the molecular genetic mechanisms and cloning the related genes of VB6 synthesis in rice. In addition, the findings have significant implications for identifying, screening, and breeding new rice cultivars with high VB6 content.

    参考文献
    [1] 张涛, 王子瑞, 毛鑫晨, 唐家琪, 张超, 于恒秀. 影响稻米品质性状的相关基因研究进展[J]. 安徽农业科学, 2023, 51(19): 17-22.ZHANG T, WANG ZR, MAO XC, TANG JQ, ZHANG C, YU HX. Research progress of genes affecting rice grain quality[J]. Journal of Anhui Agricultural Sciences, 2023, 51(19): 17-22(in Chinese).
    [2] STROBBE S, VAN DER STRAETEN D. Toward eradication of B-vitamin deficiencies: considerations for crop biofortification[J]. Frontiers in Plant Science, 2018, 9: 443.
    [3] ROSENBERG J, ISCHEBECK T, COMMICHAU FM. Vitamin B6 metabolism in microbes and approaches for fermentative production[J]. Biotechnology Advances, 2017, 35(1): 31-40.
    [4] 温其标, D.A.Sampson. 应用高效液相色谱分析谷物中的维生素B6[J]. 华南理工大学学报(自然科学版), 1997, 25(11): 99-102.WEN QB, SAMPSON DA. Analysis of B6 vitamers in cereals by high performance liquid-phase chromatography[J]. Journal of South China University of Technology (Natural Science), 1997, 25(11): 99-102(in Chinese).
    [5] 孙茂霖, 孙健, 石尚, 刘化龙, 郑洪亮, 赵宏伟, 谢冬微, 王敬国, 邹德堂. 水稻维生素B6与SSR标记的关联分析[J]. 西北农业学报, 2019, 28(1): 51-58.SUN ML, SUN J, SHI S, LIU HL, ZHENG HL, ZHAO HW, XIE DW, WANG JG, ZOU DT. Association mapping of vitamin B6 with SSR markers in rice[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(1): 51-58(in Chinese).
    [6] MITTENHUBER G. Phylogenetic analyses and comparative genomics of vitamin B6(pyridoxine) and pyridoxal phosphate biosynthesis pathways[J]. Journal of Molecular Microbiology and Biotechnology, 2001, 3(1): 1-20.
    [7] 黄龙全, 张剑韵. 植物维生素B6从头合成与代谢转换研究进展[J]. 西北植物学报, 2015, 35(10): 2124-2131.HUANG LQ, ZHANG JY. Review on the denovoSynthesis and metabolic conversions of vitamin B6 in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2124-2131(in Chinese).
    [8] VANDERSCHUREN H, BOYCHEVA S, LI KT, SZYDLOWSKI N, GRUISSEM W, FITZPATRICK TB. Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant[J]. Frontiers in Plant Science, 2013, 4: 143.
    [9] MOONEY S, CHEN LY, KÜHN C, NAVARRE R, KNOWLES NR, HELLMANN H. Genotype-specific changes in vitamin B6 content and the PDX family in potato[J]. BioMed Research International, 2013, 2013: 389723.
    [10] O’NEIL CE, KEAST DR, FULGONI VL, NICKLAS TA. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006[J]. Nutrients, 2012, 4(12): 2097-2120.
    [11] FUDGE J, MANGEL N, GRUISSEM W, VANDERSCHUREN H, FITZPATRICK TB. Rationalising vitamin B6 biofortification in crop plants[J]. Current Opinion in Biotechnology, 2017, 44: 130-137.
    [12] 张佳, 王慧杰, 何正权, 刘文真. 农杆菌介导的籼稻9311和华占遗传转化体系的研究[J]. 中国水稻科学, 2023, 37(2): 213-224.ZHANG J, WANG HJ, HE ZQ, LIU WZ. Analysis of Agrobacterium-mediated genetic transformation system of indica rice 9311 and Huazhan[J]. Chinese Journal of Rice Science, 2023, 37(2): 213-224(in Chinese).
    [13] 孙明, 张培江, 白一松, 李成荃. 热研1号、2号与我国水稻的亲和性研究[J]. 安徽农业科学, 1992, 20(3): 198-201.SUN M, ZHANG PJ, BAI YS, LI CQ. The compatibility of REYAN 1, REYAN2 with rice in China[J]. Journal of Anhui Agricultural Sciences, 1992, 20(3): 198-201(in Chinese).
    [14] 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力. 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL[J]. 中国水稻科学, 2014, 28(6): 589-597.WANG L, HUANG LC, DAI LP, YANG YL, XU J, LENG YJ, ZHANG GH, HU J, ZHU L, GAO ZY, DONG GJ, GUO LB, QIAN Q, ZENG DL. QTL analysis for rice leaf morphology at maturity stage using a recombinant inbred line population derived from a cross between nipponbare and 9311[J]. Chinese Journal of Rice Science, 2014, 28(6): 589-597(in Chinese).
    [15] 殷文晶, 陈振概, 高佩慧, 芦涛, 叶涵斐, 叶润乐, 杨茜, 路梅, 王跃星, 饶玉春. 水稻根系性状QTL定位及候选基因表达分析[J]. 浙江师范大学学报(自然科学版), 2022, 45(4): 419-426.YIN WJ, CHEN ZG, GAO PH, LU T, YE HF, YE RL, YANG X, LU M, WANG YX, RAO YC. QTL mapping and expression analysis of candidate genes for root traits in rice[J]. Journal of Zhejiang Normal University (Natural Sciences), 2022, 45(4): 419-426(in Chinese).
    [16] 钟芊芊, 黄佳慧, 殷文晶, 芦涛, 顾育嘉, 陈振概, 叶涵斐, 饶玉春. 水稻种子耐储藏性状QTLs挖掘及候选基因分析[J]. 浙江师范大学学报(自然科学版), 2023, 46(4): 425-432.ZHONG QQ, HUANG JH, YIN WJ, LU T, GU YJ, CHEN ZG, YE HF, RAO YC. QTLs mapping and expression analysis of candidate genes for root traits in rice[J]. Journal of Zhejiang Normal University (Natural Sciences), 2023, 46(4): 425-432(in Chinese).
    [17] 芦涛, 叶涵斐, 褚晓洁, 林晗, 王盛, 潘晨阳, 李三峰, 王跃星, 饶玉春. 水稻糙米率QTL检测及候选基因分析[J]. 浙江师范大学学报(自然科学版), 2022, 45(3): 323-328.LU T, YE HF, CHU XJ, LIN H, WANG S, PAN CY, LI SF, WANG YX, RAO YC. Identification of QTL brown rice rate to submergence in rice[J]. Journal of Zhejiang Normal University (Natural Sciences), 2022, 45(3): 323-328(in Chinese).
    [18] 潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴. 水稻籽粒镉积累QTL定位及候选基因分析[J]. 植物学报, 2021, 56(1): 25-32.PAN CY, YE HF, ZHOU WY, WANG S, LI MJ, LU M, LI SF, ZHU XD, WANG YX, RAO YC, DAI GX. QTL mapping of candidate genes involved in Cd accumulation in rice grain[J]. Chinese Bulletin of Botany, 2021, 56(1): 25-32(in Chinese).
    [19] 董君暘, 汪宝根, 吴晓花, 鲁忠富, 汪颖, 王尖, 李国景, 吴新义. 之豇系列长豇豆品种营养品质分析[J]. 浙江农业科学, 2022, 63(5): 1042-1047.DONG JY, WANG BG, WU XH, LU ZF, WANG Y, WANG J, LI GJ, WU XY. Nutritional quality analysis of asparagus bean varieties[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(5): 1042-1047(in Chinese).
    [20] 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892.JIA QW, ZHONG QQ, GU YJ, LU TQ, LI W, YANG S, ZHU CY, HU CX, LI SF, WANG YX, RAO YC. Mapping of QTL for cell wall related components in rice stem and analysis of candidate genes[J]. Chinese Bulletin of Botany, 2023, 58(6): 882-892(in Chinese).
    [21] 徐云碧, 申宗坦, 陈英, 朱立煌. QTL区间作图的统计理论和计算机软件及其应用[J]. 作物学报, 1995, 21(1): 1-8.XU YB, SHEN ZT, CHEN Y, ZHU LH. A statistical technique and generalized computer software for interval mapping of quantitative trait loci and its application[J]. Acta Agronomica Sinica, 1995, 21(1): 1-8(in Chinese).
    [22] MCCOUCH SR, CHO YC, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T. Report on QTL no-menclature[J]. Rice Genet Newsl, 1997, 14: 11-13.
    [23] 乐巧娜, 黄梓雯, 戴若惠, 李三峰, 李梦佳, 方媛, 王跃星, 饶玉春. 水稻蒸煮品质相关QTL定位及候选基因分析[J]. 生物工程学报, 2024, 40(1): 122-136.LE QN, HUANG ZW, DAI RH, LI SF, LI MJ, FANG Y, WANG YX, RAO YC. Mapping of QTL associated with rice cooking quality and candidate gene analysis[J]. Chinese Journal of Biotechnology, 2024, 40(1): 122-136(in Chinese).
    [24] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt Method[J]. Methods, 2001, 25(4): 402-408.
    [25] CHO JI, RYOO N, KO S, LEE SK, LEE J, JUNG KH, LEE YH, BHOO SH, WINDERICKX J, AN G, HAHN TR, JEON JS. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.)[J]. Planta, 2006, 224(3): 598-611.
    [26] SINGH R, DANGOL S, CHEN YF, CHOI J, CHO YS, LEE JE, CHOI MO, JWA NS. Magnaporthe oryzae effector AVR-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity[J]. Molecules and Cells, 2016, 39(5): 426-438.
    [27] KIM HB, CHO JI, RYOO N, SHIN DH, PARK YI, HWANG YS, LEE SK, AN G, JEON JS. Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism[J]. Journal of Integrative Plant Biology, 2016, 58(2): 127-135.
    [28] 李秀峰, 张欣欣, 高野哲夫, 柳参奎. 水稻(Oryza sativa L.)苹果酸酶(OsNADP-ME3)基因在逆境下的表达特性研究[J]. 基因组学与应用生物学, 2012, 31(4): 327-332.LI XF, ZHANG XX, TAKANO TETSUO, LIU SK. Expression characteristics of rice (Oryza sativa L.) malic enzyme (OsNADP-ME3) gene under environmental stress[J]. Genomics and Applied Biology, 2012, 31(4): 327-332(in Chinese).
    [29] OHASHI M, ISHIYAMA K, KUSANO M, FUKUSHIMA A, KOJIMA S, HAYAKAWA T, YAMAYA T. Reduction in sucrose contents by downregulation of fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2[J]. Rice, 2018, 11(1): 65.
    [30] 吴丽丽, 周丛义, 高永生, 丛悦玺, 陈坤明, 郭万里. 水稻OSNADK3基因的克隆及其遗传转化[J]. 核农学报, 2011, 25(5): 863-870.WU LL, ZHOU CY, GAO YS, CONG YX, CHEN KM, GUO WL. Cloning and genetic transformation of OSNADK3 gene in rice[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 863-870(in Chinese).
    [31] 唐馨, 苟萍. 内含子的功能[J]. 生命的化学, 2019, 39(4): 772-777.TANG X, GOU P. The inteons function[J]. Chemistry of Life, 2019, 39(4), 772-777(in Chinese).
    [32] 孙茂霖. 水稻维生素B6含量与SSR标记和OsPDX1.1基因的关联分析[D]. 哈尔滨: 东北农业大学硕士学位论文, 2019.SUN ML. Association analysis of vitamin B6 content with SSR markers and OsPDX1.1 gene in rice[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2019(in Chinese).
    [33] 孔维溧, 芦鑫荣, 侯琳琳, 孙秀发, 孙桂芹, 陈力. 维生素与免疫系统健康[J]. 四川大学学报(医学版), 2023, 54(1): 7-13.KONG WL, LU XR, HOU LL, SUN XF, SUN GQ, CHEN L. Vitamins and immune system health[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(1): 7-13(in Chinese).
    [34] BIRD RP. The emerging role of vitamin B6 in inflammation and carcinogenesis[J]. Advances in Food and Nutrition Research, 2018, 83: 151-194.
    [35] 郑建华, 张国祥. 维生素B6的临床新用途[J]. 首都医药, 1998, 5(3): 34.ZHENG JH, ZHANG GX. New clinical use of vitamin B6[J]. Capital Medicine, 1998, 5(3): 34(in Chinese).
    [36] 周大虎, 杜慧, 黎毛毛, 谢薇, 边健民, 彭小松, 傅军如, 贺浩华. 功能稻‘紫宝香糯1号’维生素A合成相关QTL定位[J]. 分子植物育种, 2022, 20(3): 873-879.ZHOU DH, DU H, LAI MM, XIE W, BIAN JM, PENG XS, FU JR, HE HH. Vitamin A synthesis related QTL mapping in functional rice ‘Zibaoxiangnuo 1’[J]. Molecular Plant Breeding, 2022, 20(3): 873-879(in Chinese).
    [37] 郝艳娟. 辣椒果实维生素C含量的遗传分析及QTL定位[D]. 哈尔滨: 东北农业大学硕士学位论文, 2016.HAO YJ. QTL mapping of Vc content in pepper fruit and genetic analysis[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2016(in Chinese).
    [38] 陈俊. 大豆芽菜中游离氨基酸和维生素C含量的遗传分析及QTL定位研究[D]. 南京: 南京农业大学硕士学位论文, 2010.CHEN J. QTL mapping and genetic analysis of amino acids and vitamin C content in soybean sprouts[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2010(in Chinese).
    [39] 王彦华. 番茄果实维生素C含量QTL定位及种质资源筛选[D]. 哈尔滨: 东北农业大学硕士学位论文, 2014.WANG YH. Quantitative trait loci affecting fruit ascorbic acid content in tomato and germ plasm screening[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2014(in Chinese).
    [40] LI HY, LIU HC, HAN YP, WU XX, TENG WL, LIU GF, LI WB. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments[J]. Theoretical and Applied Genetics, 2010, 120(7): 1405-1413.
    [41] 刘焕成. 大豆维生素E遗传变异、QTL及环境互作效应分析[D]. 哈尔滨: 东北农业大学博士学位论文, 2017.LIU HC. Genetic variation, QTL and QTL-by- environment interactions for seed vitamin E in soybean[D]. Harbin: Doctoral Dissertation of Northeast Agricultural University, 2017(in Chinese).
    [42] 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春. 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022, 57(2): 157-170.YE HF, YIN WJ, GUAN YA, YANG KR, CHEN QY, YU SY, ZHU XD, XIN DD, ZHANG W, WANG YX, RAO YC. QTL mapping and candidate gene analysis of vitamin E in rice grain[J]. Chinese Bulletin of Botany, 2022, 57(2): 157-170(in Chinese).
    [43] LIU ZG, FARKAS P, WANG K, KOHLI MO, FITZPATRICK TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis[J]. The Plant Journal: for Cell and Molecular Biology, 2022, 111(3): 662-682.
    [44] JANG JC, SHEEN J. Sugar sensing in higher plants[J]. The Plant Cell, 1994, 6(11): 1665-1679.
    [45] NAN N, WANG J, SHI YJ, QIAN YW, JIANG L, HUANG SZ, LIU YT, WU Y, LIU B, XU ZY. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content[J]. Plant Biotechnology Journal, 2020, 18(1): 172-184.
    [46] LIM MN, LEE SE, YIM HK, KIM JH, YOON IS, HWANG YS. Differential anoxic expression of sugar-regulated genes reveals diverse interactions between sugar and anaerobic signaling systems in rice[J]. Molecules and Cells, 2013, 36(2): 169-176.
    [47] 齐悦彤, 金戈, 尹小雨, 王韵舒, 吴沛泽, 王松涛, 邸小骅, 李慧, 于晓明. 利用CRISPR/Cas9技术提高水稻维生素B6含量与耐盐性[J/OL]. 分子植物育种, 1-11(2023-03-02) [2024-03-24]. http://kns.cnki.net/ kcms/detail/46.1068.S.20230301.1521.021.htmlQI YT, JIN G, YIN XY, WANG YS, WU P, WANG ST, DI XH, LI H, YU XM. Creation of enhanced vitamin B6 content and salt tolerance rice using CRISPR/Cas9 technology[J/OL]. Molecular Plant Breeding, 1-11(2023-03-02) [2024-03-24]. http://kns.cnki.net/kcms/ detail/46.1068.S.20230301.1521.021.html (in Chinese).
    [48] LIU SK, CHENG YX, ZHANG XX, GUAN QJ, NISHIUCHI S, HASE K, TAKANO T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance[J]. Plant Molecular Biology, 2007, 64(1): 49-58.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐璐瑶,连锦瑾,赵蓓蓓,沈芷琦,朱哲楠,叶语涵,张芷宁,路梅,王跃星,饶玉春. 水稻籽粒VB6含量的调控位点挖掘及分析[J]. 生物工程学报, 2024, 40(10): 3485-3499

复制
分享
文章指标
  • 点击次数:158
  • 下载次数: 316
  • HTML阅读次数: 231
  • 引用次数: 0
历史
  • 收稿日期:2024-04-28
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第5987247位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司