OsSTP1介导蔗糖分配调控水稻氮响应
作者:
基金项目:

湖南省重点研发计划(2022NK2009)


OsSTP1 mediates sucrose allocation to regulate rice responses to different nitrogen supply levels
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提高水稻氮肥的利用效率是增加产量的有效途径,而维持碳氮平衡是促进水稻正常生长发育的保障。为探究蔗糖转运蛋白OsSTP1对水稻氮素吸收的影响,本研究以野生型TB309为背景材料,构建了蔗糖转运蛋白OsSTP1的过表达转基因株系OsSTP1-OE1OsSTP1-OE2和突变体转基因株系osstp1-1osstp1-2。采用水培试验,设置不供氮(free nitrogen,FN,0 mg/L)、低氮(low nitrogen,LN,10 mg/L)、正常氮(normal nitrogen,NN,40 mg/L)和高氮(high nitrogen,HN,80 mg/L)四个供氮水平,研究各株系苗期对不同供氮水平的响应。结果发现,相对于野生型和突变体,OsSTP1过表达材料在低氮水平下,生物量、根长、株高显著增加,叶片可溶性糖含量显著降低,而根部的可溶性糖含量显著增加。表明其叶片光合作用产生的可溶性糖通过韧皮部转运到根系中,从而促进根系的生长来吸收更多的氮素促进地上部生物量增加。本研究证明水稻糖转运蛋白基因OsSTP1通过影响水稻碳水化合物在源库端的长距离运输来促进水稻的根系生长,最终影响水稻对氮素的吸收与积累,提高了水稻氮素利用率,为氮肥减施提供了参考。

    Abstract:

    Improving the nitrogen use efficiency is an effective way to increase the yield of rice, and maintaining carbon-nitrogen balance is essential for the normal growth and development of rice. To investigate the impact of the sucrose transporter protein OsSTP1 on nitrogen absorption in rice, in this study, we constructed transgenic lines overexpressing the sucrose transporter gene OsSTP1 (OsSTP1-OE1, OsSTP1-OE2) and mutant transgenic lines (osstp1-1, osstp1-2) from the wild type TB309. Further, we conducted a hydroponic experiment with four nitrogen supply levels of free nitrogen (FN, 0 mg/L), low nitrogen (LN, 10 mg/L), normal nitrogen (NN, 40 mg/L), and high nitrogen (HN, 80 mg/L) to study the responses of each line to different nitrogen supply levels during the seedling stage. The results showed that compared with the wild type and mutant lines in the LN group, the OsSTP1-overexpressing lines exhibited significantly increased biomass, root length, and plant height, decreased soluble sugar content in the leaves, and increased soluble sugar content in the roots. The results indicate that the soluble sugars produced by leaf photosynthesis are transported to the roots through the phloem to promote root growth and nitrogen uptake, thus increasing the aboveground biomass. This study has identified that OsSTP1 can affect the long-distance transport of carbohydrates from source to sink to promote root growth, ultimately influencing rice’s absorption and accumulation of nitrogen, improving nitrogen use efficiency and providing reference for reducing nitrogen fertilizer application.

    参考文献
    [1] WANI SH, VIJAYAN R, CHOUDHARY M, KUMAR A, ZAID A, SINGH V, KUMAR P, YASIN JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize (Zea mays L.)[J]. Physiology and Molecular Biology of Plants, 2021, 27(12): 2875-2891.
    [2] BASHIR SS, SIDDIQI TO, KUMAR D, AHMAD A. Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency[J]. Molecular Biology Reports, 2023, 50(2): 1575-1593.
    [3] 李佳佳, 徐翎清, 赵阳, 芮秀丽, 石俊婷, 刘大丽. 氮代谢参与植物低氮胁迫研究进展[J]. 中国农学通报, 2022, 38(27): 119-124.LI JJ, XU LQ, ZHAO Y, RUI XL, SHI JT, LIU DL. Nitrogen metabolism involved in low nitrogen stress in plants: a review[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 119-124(in Chinese).
    [4] LYNCH JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2): 347-357.
    [5] LANGHOLTZ M, DAVISON BH, JAGER HI, EATON L, BASKARAN LM, DAVIS M, BRANDT CC. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits[J]. Science of the Total Environment, 2020, 758(3): 143602.
    [6] ZHANG X, DAVIDSON EA, MAUZERALL DL, SEARCHINGER TD, DUMAS P, SHEN Y. Managing nitrogen for sustainable development[J]. Nature, 2015, 528: 51-59.
    [7] DENG XL, AN BG, ZHONG H, YANG J, KONG WL, LI YS. A novel insight into functional divergence of the MST gene family in rice based on comprehensive expression patterns[J]. Genes, 2019, 10(3): 239.
    [8] JOHNSON DA, HILL JP, THOMAS MA. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages[J]. BMC Evolutionary Biology, 2006, 6: 64.
    [9] JOHNSON DA, THOMAS MA. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence[J]. Molecular Biology and Evolution, 2007, 24(11): 2412-2423.
    [10] TOYOFUKU K, TAKEDA T, YAMAGUCHI J, KASAHARA M. Characterization and expression of rice monosaccharide transporter genes, OsMST1−3[J]. Advance in Rice Genetics, 2008, 409-411.
    [11] NGAMPANYA B, SOBOLEWSKA A, TAKEDA T, TOYOFUKU K, NARANGAJAVANA J, IKEDA A, YAMAGUCHI J. Characterization of rice functional monosaccharide transporter, OsMST5[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(3): 556-562.
    [12] WANG YQ, XIAO YG, ZHANG Y, CHAI CL, WEI G, WEI XL, XU HL, WANG M, OUWERKERK PBF, ZHU Z. Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.)[J]. Planta, 2008, 228(4): 525-535.
    [13] WEI S, LI X, LU Z, ZHANG H, YE X, ZHOU Y, LI J, YAN Y, PEI H, DUAN F, WANG D, CHEN S, WANG P, ZHANG C, SHANG L, ZHOU Y, YAN P, ZHAO M, HUANG J, BOCK R, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604).
    [14] GRIFFITHS CA, PAUL MJ, FOYER CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions[J]. Biochimica et Biophysica Acta, 2016, 1857(10): 1715-1725.
    [15] SCHOFIELD RA, BI YM, KANT S, ROTHSTEIN SJ. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thalianaseedlings[J]. Plant, Cell & Environment, 2009, 32(3): 271-285.
    [16] TIAN X, ZOU H, XIAO Q, XIN H, ZHU L, LI Y, MA B, CUI N, RUAN Y-L, MA F, LI M. Uptake of glucose from the rhizosphere, mediated by apple MdHT1.2, regulates carbohydrate allocation[J]. Plant Physiology 2023, 193(1): 410-425.
    [17] PAN JF, CUI KH, WEI D, HUANG JL, XIANG J, NIE LX. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels[J]. Physiologia Plantarum, 2011, 141(4): 321-331.
    [18] 李姗, 沈成波. 调控作物硝态氮代谢和利用的研究进展[J]. 南京农业大学学报, 2022, 45(5): 848-855.LI SHAN, SHEN CB. Research progress on regulation of nitrate metabolism and utilization in crops[J]. Journal of Nanjing Agricultural University, 2022, 45(5): 848-855(in Chinese).
    [19] WANG H, XU ST, FAN YM, LIU NN, ZHAN W, LIU HJ, XIAO YJ, LI K, PAN QC, LI WQ, DENG M, LIU J, JIN M, YANG XH, LI JS, LI Q, YAN JB. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses[J]. Plant Biotechnology Journal, 2018, 16(8): 1464-1475.
    [20] WEI MY, YUN F, LIU GS, SONG L. Response of photosynthetic characteristics and accumulation and distribution of assimilation products in tobacco to different light environments[J]. The Journal of Applied Ecology, 2017, 28(1): 159-168.
    [21] 刘怡然, 吴正丹, 吴维泰, 杨朝彬, 陈才睿, 张凯. 甘薯蔗糖转运蛋白的功能分析[J]. 生物工程学报, 2023, 39(7): 2772-2793.LIU YR, WU ZD, WU WT, YANG CB, CHEN CR, ZHANG K. Functional analysis on sucrose transporters in sweet potato[J]. Chinese Journal of Biotechnology, 2023, 39(7): 2772-2793(in Chinese).
    [22] NING P, YANG L, LI CJ, FRITSCHI FB. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize[J]. Journal of Experimental Botany, 2018, 69(7): 1707-1719.
    [23] SUN LL, SUI XL, LUCAS WJ, LI YX, FENG S, MA S, FAN JW, GAO LH, ZHANG ZX. Down-regulation of the sucrose transporter CsSUT1 causes male sterility by altering carbohydrate supply[J]. Plant Physiology, 2019, 180(2): 986-997.
    [24] McKINLEY BA, CASTO AL, ROONEY WL, MULLET JE. Developmental dynamics of stem starch accumulation in Sorghum bicolor[J]. Plant Direct, 2018, 2(8): e00074.
    [25] 张振华, 刘冬, 罗劲松. 水稻糖转运基因OsMST1及其糖转运体、应用和扩增引物: CN2202011371727.2.X[P]. 2022-02-25.ZHANG ZH, LIU D, LUO JS. Gene OsMST1 of rice sugar transporter and its sugar transporter, application and amplification primers: CN2202011371727.2.X[P]. 2022-02-25(in Chinese).LUO JS, GU TY, YANG Y, ZHANG ZH. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis[J]. Plant Molecular Biology, 2019, 100(4): 561-569.
    [27] HATFIELD JL, SAUER TJ, CRUSE RM. Soil: the forgotten piece of the water, food, energy nexus[J]. Advances in Agronomy, 2017, 143: 1-46.
    [28] CHEN QW, MU XH, CHEN FJ, YUAN LX, MI GH. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply[J]. European Journal of Agronomy, 2016, 80: 137-153.
    [29] LI XX, ZENG RS, LIAO H. Improving crop nutrient efficiency through root architecture modifications[J]. Journal of Integrative Plant Biology, 2016, 58(3): 193-202.
    [30] 眭晓蕾, 毛胜利, 王立浩, 李伟, 张宝玺, 张振贤. 辣椒幼苗叶片解剖特征及光合特性对弱光的响应[J]. 园艺学报, 2009, 36(2): 195-208.SUI XL, MAO SL, WANG LH, LI W, ZHANG BX, ZHANG ZX. Response of anatomical structure and photosynthetic characteristics to low light in leaves of Capsicum seedlings[J]. Acta Horticulturae Sinica, 2009, 36(2): 195-208(in Chinese).
    [31] HAVÉ M, MARMAGNE A, CHARDON F, MASCLAUX- DAUBRESSE C. Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops[J]. Journal of Experimental Botany, 2017, 68(10): 2513-2529.
    [32] ZHAO B, ATA-UL-KARIM ST, LIU ZD, NING DF, XIAO JF, LIU ZG, QIN AZ, NAN JQ, DUAN AW. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize[J]. Field Crops Research, 2017, 208: 60-68.
    [33] RUZICKA DR, HAUSMANN NT, BARRIOS-MASIAS FH, JACKSON LE, SCHACHTMAN DP. Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions[J]. Plant and Soil, 2012, 350(1): 145-162.
    [34] SAIZ-FERNÁNDEZ I, de DIEGO N, BRZOBOHATÝ B, MUÑOZ-RUEDA A, LACUESTA M. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.)[J]. Plant Physiology and Biochemistry: PPB, 2017, 120: 213-222.
    [35] KUMAR R, BISHOP E, BRIDGES WC, THARAYIL N, SEKHON RS. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize[J]. Plant, Cell & Environment, 2019, 42(9): 2597-2611.
    [36] 徐秋生, 李卓吾. 亚种间杂交稻谷粒灌浆特性与籽粒充实度的研究[J]. 杂交水稻, 1994, 9(2): 26-29.XU QS, LI ZW. Studies on the filling characteristics and the plumpness of grains in inter-subspecific hybrid rice[J]. Hybrid Rice, 1994, 9(2): 26-29(in Chinese).
    [37] 刘光明, 赵灿, 蒋岩, 赵凌天, 廖平强, 王维领, 霍中洋. 施氮量对水稻源库协同衰老特征的影响[J]. 植物生理学报, 2022, 58(1): 173-185.LIU GM, ZHAO C, JIANG Y, ZHAO LT, LIAO PQ, WANG WL, HUO ZY. Eeffects of nitrogen application on the synergistic senescence of rice source and sink[J]. Plant Physiology Journal, 2022, 58(1): 173-185.
    [38] 宋淑英. 供氮水平小麦/玉米幼苗生理特性对CO2浓度倍增的响应[D]. 杨凌: 西北农林科技大学硕士学位论文, 2010.SONG SY. Responses of physiological characteristics of wheat/maize seedling to elevated CO2 concentration[D]. Yangling: Master’s Thesis of Northwest A & F University, 2010(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡圣磊,刘冬,郭宝,李虹烨,朱启东,张振华. OsSTP1介导蔗糖分配调控水稻氮响应[J]. 生物工程学报, 2024, 40(10): 3500-3514

复制
分享
文章指标
  • 点击次数:220
  • 下载次数: 286
  • HTML阅读次数: 248
  • 引用次数: 0
历史
  • 收稿日期:2023-12-12
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6075006位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司