基于比较代谢组学解析藤仓赤霉菌CGMCC 17793高产GA4机制
作者:
基金项目:

浙江省基础公益研究计划(LGG22C140001);浙江省"三农九方"科技协作计划(2024SNJF27)


Comparative metabolomics reveals the mechanism for the high GA4 production in Gibberella fujikuroi CGMCC 17793
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    新型赤霉素(gibberellin) GA4因其独特的优势而具有广阔的应用前景。为探究GA4生物合成调控机制,本研究以藤仓赤霉菌(Gibberella fujikuroi) GA4生产菌株S (CGMCC 17793)和野生菌株Y (GenBank登录号:NRRL 13620)为研究对象,利用液相色谱-质谱联用(liquid chromatograph-mass spectrometer,LC-MS)代谢组学技术,结合主成分分析(principal component analysis,PCA)与偏最小二乘-显著性分析联合法(partial least squares-discrimination analysis,PLS-DA)等对两种菌株在同一发酵时间以及菌株S在不同发酵时间的差异代谢物进行筛选与鉴定,并利用KEGG数据库和MBROLE 2.0分析相关代谢通路。结果表明,与菌株Y相比,菌株S在发酵3、6、9 d时,显著上调和下调的代谢物分别为107种和66种、136种和47种、94种和65种。与生产菌株S发酵3 d时相比,6、9 d时显著上调和下调的代谢物分别为29种和40种、52种和67种。菌株S与菌株Y同一发酵时间的差异代谢物主要富集在氨基酸代谢、三羧酸循环(tricarboxylic acid cycle,TCA cycle)和萜类生物合成等通路。菌株S不同发酵时间的差异代谢物主要富集在氨基酸代谢与糖代谢等合成途径。通路注释与分析结果说明,菌株S通过促进氨基酸与糖代谢、TCA循环产生更多乙酰CoA,增强了甲羟戊酸途径,从而使萜类化合物合成的前体物质异戊烯焦磷酸(isopentenyl pyrophosphate,IPP)含量增加,最终提高了GA4产量。本研究探究了藤仓赤霉菌GA4代谢规律,为调控藤仓赤霉菌提高GA4产量提供了理论基础。

    Abstract:

    With unique advantages, gibberellin GA4 has broad application prospects. To explore the regulatory mechanism for the biosynthesis of GA4, we combined liquid chromatography- mass spectrometry (LC-MS)-based metabolomics with principal component analysis (principal component analysis, PCA) and partial least squares-discriminant analysis (PLS-DA) to screen and identify the differential metabolites between the GA4-producing strains S (industrial high-yield strain CGMCC 17793) and wild-type strain Y (NRRL 13620) of Gibberella fujikuroi fermented for the same time and the differential metabolites of strain S fermented for different time periods. KEGG and MBROLE 2.0 were used to analyze the metabolic pathways involving the differential metabolites. The results showed that compared with strain Y, strain S significantly upregulated and downregulated 107 and 66, 136 and 47, and 94 and 65 metabolites on days 3, 6, and 9, respectively. Compared with that on day 3 of fermentation, strain S upregulated 29 metabolites and downregulated 40 metabolites on day 6 and upregulated 52 metabolites and downregulated 67 metabolites on day 9. The differential metabolites between strain S and strain Y after fermentation for the same time were mainly enriched in amino acid metabolism, tricarboxylic acid (TCA) cycle, and terpenoid biosynthesis. The differential metabolites of strain S after fermentation for different time periods were mainly enriched in amino acid and sugar metabolism pathways. Pathway annotation results indicated that strain S increased the production of acetyl-CoA by promoting amino acid and sugar metabolism and TCA cycle, thereby enhancing the mevalonic acid pathway and increasing the content of isopentenyl pyrophosphate (IPP), a precursor for the synthesis of terpenoids, which ultimately led to increased GA4 production. This study explored the metabolic rules of Gibberella fujikuroi GA4, providing a theoretical basis for regulating Gibberella fujikuroi to improve GA4 production.

    参考文献
    [1] 魏晓琼, 贾文飞, 马靖恒, 王颖, 李金英, 吴林. 植物生长调节剂对植株生长发育的影响概述[J]. 北方园艺, 2022(4): 118-125.WEI XQ, JIA WF, MA JH, WANG Y, LI JY, WU L. Review on the effects of plant growth regulators on plant growth and development[J]. Northern Horticulture, 2022(4): 118-125(in Chinese).
    [2] RODRIGUES C, de SOUZA VANDENBERGHE LP, de OLIVEIRA J, SOCCOL CR. New perspectives of gibberellic acid production: a review[J]. Critical Reviews in Biotechnology, 2012, 32(3): 263-273.
    [3] ATAY AN, KOYUNCU F. Manipulating regular bearing in ‘golden delicious’/M9 apple trees using GA4+7 and ethephon[J]. International Journal of Fruit Science, 2016, 16(1): 10-22.
    [4] PESTEANU A. Effect of application with gibberellin GA4+7 on russeting of, golden delicious’ apples[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Horticulture, 2015, 72(2): 38-44.
    [5] 庄木坤. 赤霉素高产菌株改造与发酵研究[D]. 武汉: 华中农业大学硕士学位论文, 2007.ZHUANG MK. Breeding of gibberellic acid overproducting strain and fermentation[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2007(in Chinese).
    [6] WANG BX, YIN KN, WU CF, WANG L, YIN LH, LIN HP. Medium optimization for GA4 production by Gibberella fujikuroi using response surface methodology[J]. Fermentation, 2022, 8(5): 230.
    [7] LALE G, GADRE R. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(3): 297-306.
    [8] KAWAIDE H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(3): 583-590.
    [9] 孔宏伟, 戴伟东, 许国旺. 基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展[J]. 色谱, 2014, 32(10): 1052-1057.KONG HW, DAI WD, XU GW. Advances of metabolite identification in liquid chromatographymass spectrometry based metabolomics[J]. Chinese Journal of Chromatography, 2014, 32(10): 1052-1057(in Chinese).
    [10] KWON SW, KIM NE, JIN SH, SEO J, HAM TH, LEE J. Evaluation of the rsistant to bakanae disease in Korean rice landraces (Oryza sativa L.)[J]. Plant Breeding and Biotechnology, 2021, 9(4): 355-359.
    [11] 俞邱豪, 张九凯, 叶兴乾, 陈颖. 基于代谢组学的食品真实属性鉴别研究进展[J]. 色谱, 2016, 34(7): 657-664.YU QH, ZHANG JK, YE XQ, CHEN Y. Progress on metabolomics for authenticity identification of food[J]. Chinese Journal of Chromatography, 2016, 34(7): 657-664(in Chinese).
    [12] 杨波, 杨强, 张爱华, 王喜军. 基于代谢组学技术的中医药研究进展[J]. 中国医药导报, 2019, 16(24): 24-28.YANG B, YANG Q, ZHANG AH, WANG XJ. Research progress of traditional Chinese medicine based on metabolomics technology[J]. China Medical Herald, 2019, 16(24): 24-28(in Chinese).
    [13] LUO C, ZHANG XQ, HE YF, CHEN H, LIU MR, WANG HR, TANG LF, TU G, DING M. A pseudo- targeted metabolomics study based on serum bile acids profiling for the differential diagnosis of benign and malignant breast lesions[J]. Steroids, 2021, 175: 108914.
    [14] ZHANG CY, FLOR S, RUIZ P, DHAKAL R, HU X, TEESCH LM, LUDEWIG G, LEHMLER HJ. 3,3ʹ-dichlorobiphenyl is metabolized to a complex mixture of oxidative metabolites, including novel methoxylated metabolites, by HepG2 cells[J]. Environmental Science & Technology, 2020, 54(19): 12345-12357.
    [15] YE XX, WANG XQ, WANG YF, SUN WT, CHEN Y, WANG D, LI ZH, LI ZF. A urine and serum metabolomics study of gastroesophageal reflux disease in TCM syndrome differentiation using UPLC-Q-TOF/ MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 206: 114369.
    [16] 皇甫诗男. 低温暗培养下笃斯越橘代谢重组研究及转录组分析[D]. 哈尔滨: 东北农业大学硕士学位论文, 2018.HUANGFU SN. Study on metabolic recombination and transcriptome analysis of V. uliginosum L. under low temperature and dark culture[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2018(in Chinese).
    [17] 王亮. 酿酒酵母高浓度乙醇连续发酵体系振荡行为[D]. 大连: 大连理工大学博士学位论文, 2014.WANG L. Oscillatory behavior in very-high-gravity continuous ethanol fermentation by Saccharomyces cerevisiae[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2014(in Chinese).
    [18] 韦平和, 彭加平. 色氨酸酶的催化功能及其在l-色氨酸酶法合成中的应用[J]. 药物生物技术, 2011, 18(2): 180-184.WEI PH, PENG JP. Catalytic function of tryptophanase and its application in enzymatic synthesis of l-tryptophan[J]. Pharmaceutical Biotechnology, 2011, 18(2): 180-184(in Chinese).
    [19] 李亮, 尚晓冬, 谭琦. 担子菌中甲羟戊酸途径影响萜类物质合成的研究[J]. 中国农业科技导报, 2014, 16(3): 53-61.LI L, SHANG XD, TAN Q. Studies of mevalonate pathway influence on biosynthesis of terpenoids in basidiomycota[J]. Journal of Agricultural Science and Technology, 2014, 16(3): 53-61(in Chinese).
    [20] 魏萍, 任路静, 纪晓俊, 仝倩倩, 冯云, 黄和. 强化乙酰辅酶A供应对裂殖壶菌合成二十二碳六烯酸的影响[J]. 中国生物工程杂志, 2011, 31(4): 87-91.WEI P, REN LJ, JI XJ, TONG QQ, FENG Y, HUANG H. Effect of reinforcing acetyl-CoA supply in docosahexaenoic acid production by Schizochytrium sp.[J]. China Biotechnology, 2011, 31(4): 87-91(in Chinese).
    [21] SHIBA Y, PARADISE EM, KIRBY J, RO DK, KEASLING JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metabolic Engineering, 2007, 9(2): 160-168.
    [22] CHEN Y, DAVIET L, SCHALK M, SIEWERS V, NIELSEN J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48-54.
    [23] 王美迟, 王贤纯. 物质代谢网络中葡萄糖有氧分解途径的主干道作用分析及课堂教学[J]. 高师理科学刊, 2019, 39(1): 94-97, 110.WANG MC, WANG XC. Analysis and classroom teaching of the main road role of glucose aerobic decomposition pathway in substance metabolic network[J]. Journal of Science of Teachers’ College and University, 2019, 39(1): 94-97, 110(in Chinese).
    [24] 王琪琳, 陈路. 三种酮酸与四大类物质代谢的关系[J]. 生命的化学, 2019, 39(3): 616-622.WANG QL, CHEN L. The relationship between three major ketoacids and four major types of substance metabolism[J]. Chemistry of Life, 2019, 39(3): 616-622(in Chinese).
    [25] 伏贝贝. 改造酿酒酵母乙酰辅酶A合成途径及其在香叶醇生产中的应用[D]. 济南: 齐鲁工业大学硕士学位论文, 2018.FU BB. Engineering acetyl-CoA synthetic pathway and its application in geraniol production in Saccharomyces cerevisiae[D]. Jinan: Master’s Thesis of Qilu University of Technology, 2018(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林嘉浩,殷凯楠,韩欣欣,张心齐,尹良鸿,吴酬飞,丁娜娜,林海萍. 基于比较代谢组学解析藤仓赤霉菌CGMCC 17793高产GA4机制[J]. 生物工程学报, 2024, 40(10): 3548-3560

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-12
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第5991230位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司