Zur参与大豆斑疹病菌在寄主上的致病性和在非寄主上的过敏性反应
作者:
基金项目:

国家大学生创新创业训练计划(202210345031);浙江省大学生科技创新活动计划(2023R404037)


Xanthomonas axonopodis pv. glycines Zur is involved in pathogenicity in host and hypersensitive responses in nonhosts
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锌吸收调控蛋白(zinc uptake regulator,Zur)在植物病原黄单胞菌中的序列高度保守,但其在不同菌株或小种中的功能却差异显著。为阐明Zur在大豆斑疹病菌(Xanthomonas axonopodis pv.glycines,Xag)中的功能,本研究利用同源重组策略获得了zur基因的缺失突变株(∆zur)。该突变株在寄主大豆上的致病性和在非寄主(烟草、番茄、辣椒和茄子)上激发超敏反应(hypersensitive responses,HR)能力相较于野生型均显著减弱。此外,与野生型菌株相比,突变株∆zur的胞内锌稳态失衡,细胞外多糖(extracellular polysaccharide,EPS)产量和胞外水解酶(纤维素酶、内切葡聚糖酶、淀粉酶和蛋白酶)表达均大幅降低,而且其对Zn2+、Fe3+和Cu2+的敏感性显著增强。功能互补可将突变株Δzur的上述缺陷性表型恢复至野生型水平。荧光定量PCR结果表明,zur基因受Zn2+诱导表达;且zur基因突变大幅降低hrp基因簇代表性基因(hrpB1hrpD6hrpEhrcVhrcC)、胞外水解酶编码基因(engXCAegl2pro1pro2pro8pro11alpha1)和EPS合成基因(gumBgumDgumKgumMgumGgumH)的表达水平。这些结果表明,Zur可能通过调控毒性因子合成和hrp基因表达,从而参与Xag在寄主大豆上的致病性和在非寄主植物上激发HR能力。本研究为进一步解析Zur在黄单胞菌-植物互作中的作用机制奠定了基础。

    Abstract:

    The zinc uptake regulator (Zur) has highly conserved sequences in the plant pathogen Xanthomonas, while its functions are diverse in different strains or races. To elucidate the functions of Zur in Xanthomonas axonopodis pv. glycines (Xag), we constructed a zur-deleted mutant (Δzur) by homologous recombination. Compared with the wild type, Δzur demonstrated reduced pathogenicity in the host soybean and reduced ability to trigger hypersensitive responses (HR) in nonhosts such as tobacco, tomato, chili pepper, and eggplant. Additionally, the deletion of zur significantly enhanced Xag’s sensitivity to Zn2+, Fe3+, and Cu2+, induced an imbalance in intracellular zinc homeostasis, decreased extracellular polysaccharide (EPS) production, and down-regulated the expression of extracellular hydrolases (cellulase, endo-glucanase, amylase, and protease). Functional complementation restored the defective properties of Δzur to the wild-type levels. The qRT-PCR results showed that zur expression was remarkably induced by Zn2+. Moreover, the deletion of zur evidently reduced the expression levels of hrp representative genes (hrpB1, hrpD6, hrpE, hrcV, and hrcC), extracellular hydrolase encoding genes (engXCA, egl2, pro1, pro2, pro8, pro11, and alpha1), and EPS synthesis genes (gumB, gumD, gumK, gumM, gumG, and gumH) relative to the wild type. In summary, the results suggested that Zur may be involved in pathogenicity in the host soybean and in triggering HR in nonhosts of Xag by regulating the synthesis of virulence factors and the expression of hrp genes. This laid a foundation for further analysis of the mechanism of Zur in Xanthomonas-plant interaction.

    参考文献
    [1] RYAN RP, VORHÖLTER FJ, POTNIS N, JONES JB, van SLUYS MA, BOGDANOVE AJ, DOW JM. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions[J]. Nature Reviews Microbiology, 2011, 9(5): 344-355.
    [2] JACQUES MA, ARLAT M, BOULANGER A, BOUREAU T, CARRÈRE S, CESBRON S, CHEN NWG, COCIANCICH S, DARRASSE A, DENANCÉ N, SAUX MFL, GAGNEVIN L, KOEBNIK R, LAUBER E, NOËL LD, PIERETTI I, PORTIER P, PRUVOST O, RIEUX A, ROBÈNE I, et al. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas[J]. Annual Review of Phytopathology, 2016, 54: 163-187.
    [3] BÜTTNER D, BONAS U. Regulation and secretion of Xanthomonas virulence factors[J]. FEMS Microbiology Reviews, 2010, 34(2): 107-133.
    [4] TIMILSINA S, POTNIS N, NEWBERRY EA, LIYANAPATHIRANAGE P, IRUEGAS-BOCARDO F, WHITE FF, GOSS EM, JONES JB. Xanthomonas diversity, virulence and plant-pathogen interactions[J]. Nature Reviews Microbiology, 2020, 18(8): 415-427.
    [5] GUO W, GAO J, CHEN QS, MA BJ, FANG Y, LIU X, CHEN GY, LIU JZ. Crp-like protein plays both positive and negative roles in regulating the pathogenicity of bacterial pustule pathogen Xanthomonas axonopodis pv. glycines[J]. Phytopathology, 2019, 109(7): 1171-1183.
    [6] CHATNAPARAT T, PRATHUANGWONG S, LINDOW SE. Global pattern of gene expression of Xanthomonas axonopodis pv. glycines within soybean leaves[J]. Molecular Plant-Microbe Interactions, 2016, 29(6): 508-522.
    [7] LYU MY, CHENG YQ, DAI YJ, WEN Y, SONG Y, LI JL, CHEN Z. Zinc-responsive regulator Zur regulates zinc homeostasis, secondary metabolism, and morphological differentiation in Streptomyces avermitilis[J]. Applied and Environmental Microbiology, 2022, 88(7): e0027822.
    [8] LIU ZQ, XU ZR, CHEN SZ, HUANG JH, LI T, DUAN C, ZHANG LH, XU ZL. CzcR is essential for swimming motility in Pseudomonas aeruginosa during zinc stress[J]. Microbiology Spectrum, 2022, 10(6): e0284622.
    [9] KALLIFIDAS D, PASCOE B, OWEN GA, STRAIN- DAMERELL CM, HONG HJ, PAGET MSB. The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor[J]. Journal of Bacteriology, 2010, 192(2): 608-611.
    [10] DJOKO KY, ONG CLY, WALKER MJ, MCEWAN AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens[J]. The Journal of Biological Chemistry, 2015, 290(31): 18954-18961.
    [11] XUE Q, KANG R, KLIONSKY DJ, TANG DL, LIU JB, CHEN X. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195.
    [12] LI XH, CHEN L, WANG YK, GUO X, HE ZG. Zinc excess impairs Mycobacterium bovis growth through triggering a Zur-IdeR-iron homeostasis signal pathway[J]. Microbiology Spectrum, 2023, 11(5): e0106923.
    [13] KANDARI D, JOSHI H, BHATNAGAR R. Zur: zinc-sensing transcriptional regulator in a diverse set of bacterial species[J]. Pathogens, 2021, 10(3): 344.
    [14] FILLAT MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators[J]. Archives of Biochemistry and Biophysics, 2014, 546: 41-52.
    [15] AJIBOYE TO, SKIEBE E, WILHARM G. Impact of zinc uptake regulator Zur on the susceptibility and oxidative stress response of Acinetobacter baumannii to antibiotics[J]. International Journal of Antimicrobial Agents, 2019, 53(4): 467-473.
    [16] YANG WF, LIU Y, CHEN L, GAO TC, HU BS, ZHANG DF, LIU FQ. Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice[J]. Current Microbiology, 2007, 54(4): 307-314.
    [17] HE YW, NG AYJ, XU M, LIN K, WANG LH, DONG YH, ZHANG LH. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network[J]. Molecular Microbiology, 2007, 64(2): 281-292.
    [18] HUANG DL, TANG DJ, LIAO Q, LI XQ, HE YQ, FENG JX, JIANG BL, LU GT, TANG JL. The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG[J]. Molecular Plant-Microbe Interactions, 2009, 22(3): 321-329.
    [19] LI YR, ZOU HS, CHE YZ, CUI YP, GUO W, ZOU LF, CHATTERJEE S, BIDDLE EM, YANG CH, CHEN GY. A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola[J]. Molecular Plant-Microbe Interactions, 2011, 24(9): 1086-1101.
    [20] DEAN P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection[J]. FEMS Microbiology Reviews, 2011, 35(6): 1100-1125.
    [21] CHAO NX, WEI K, CHEN Q, MENG QL, TANG DJ, HE YQ, LU GT, JIANG BL, LIANG XX, FENG JX, CHEN BS, TANG JL. The rsmA-like gene rsmAXcc of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis[J]. Molecular Plant-Microbe Interactions, 2008, 21(4): 411-423.
    [22] 张翠萍, 阎依超, 李逸朗, 杨瑞环, 李生樟, 黄梦桑, 邹丽芳, 陈功友. 水稻白叶枯病菌Zur和HrpG平行调控hrcC基因表达[J]. 植物病理学报, 2020, 50(5): 574-583.ZHANG CP, YAN YC, LI YL, YANG RH, LI SZ, HUANG MS, ZOU LF, CHEN GY. Zur regulates hrcC gene expression in parallel with HrpG in Xanthomonas oryzae pv. oryzae[J]. Acta Phytopathologica Sinica, 2020, 50(5): 574-583(in Chinese).
    [23] WANG T, LI YJ, LI J, ZHANG DZ, CAI NY, ZHAO GH, MA HK, SHANG C, MA Q, XU QY, CHEN N. An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum[J]. Microbial Biotechnology, 2019, 12(5): 907-919.
    [24] ROSCH JW, GAO GL, RIDOUT G, WANG YD, TUOMANEN EI. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae[J]. Molecular Microbiology, 2009, 72(1): 12-25.
    [25] 王志鹏, 于海英, 马旅雁. 铜绿假单胞菌铁摄取调节子Fur诱导表达突变株构建及表型分析[J]. 生物工程学报, 2021, 37(9): 3253-3267.WANG ZP, YU HY, MA LY. Construction and phenotypic study of Pseudomonas aeruginosa inducibly expressing a ferric uptake regulator[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3253-3267(in Chinese).
    [26] MIKHAYLINA A, KSIBE AZ, SCANLAN DJ, BLINDAUER CA. Bacterial zinc uptake regulator proteins and their regulons[J]. Biochemical Society Transactions, 2018, 46(4): 983-1001.
    [27] CARPENTER SCD, KLADSUWAN L, HAN SW, PRATHUANGWONG S, BOGDANOVE AJ. Complete genome sequences of Xanthomonas axonopodis pv. glycines isolates from the United States and Thailand reveal conserved transcription activator-like effectors[J]. Genome Biology and Evolution, 2019, 11(5): 1380-1384.
    [28] TANG DJ, LI XJ, HE YQ, FENG JX, CHEN BS, TANG JL. The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris[J]. Molecular Plant-Microbe Interactions, 2005, 18(7): 652-658.
    [29] SOLÉ M, SCHEIBNER F, HOFFMEISTER AK, HARTMANN N, HAUSE G, ROTHER A, JORDAN M, LAUTIER M, ARLAT M, BÜTTNER D. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles[J]. Journal of Bacteriology, 2015, 197(17): 2879-2893.
    [30] 苏如意, 金罗佳, 徐江玲, 耿慧雅, 陈晓, 林思怡, 郭威, 纪志远. 大豆斑疹病菌铁摄取因子PiuB在致病性中的作用分析[J]. 生物工程学报, 2024, 40(1): 177-189.SU RY, JIN LJ, XU JL, GENG HY, CHEN X, LIN SY, GUO W, JI ZY. The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines[J]. Chinese Journal of Biotechnology, 2024, 40(1): 177-189(in Chinese).
    [31] LIU FM, SU ZH, CHEN P, TIAN XL, WU LJ, TANG DJ, LI PF, DENG HT, DING PF, FU Q, TANG JL, MING ZH. Structural basis for zinc-induced activation of a zinc uptake transcriptional regulator[J]. Nucleic Acids Research, 2021, 49(11): 6511-6528.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林思怡,郑银邦,练梦洁,金罗佳,耿慧雅,徐江玲,纪志远,郭威. Zur参与大豆斑疹病菌在寄主上的致病性和在非寄主上的过敏性反应[J]. 生物工程学报, 2024, 40(10): 3603-3618

复制
分享
文章指标
  • 点击次数:224
  • 下载次数: 285
  • HTML阅读次数: 200
  • 引用次数: 0
历史
  • 收稿日期:2023-11-29
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6020896位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司