节杆菌HW08降解苦马豆素关键基因在乳酸乳球菌中的表达及降解功能分析
作者:
基金项目:

陕西省科技攻关计划(2019NY-090)


Expression and degradation function analysis of the key genes from Arthrobacter nitroquajacolicus HW08 in Lactococcus lactis for the degradation of swainsonine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为缓解疯草中毒病对我国畜牧业的不良影响并充分利用潜在牧草资源,利用生物降解技术对疯草进行处理,可以去除疯草中的主要毒性成分苦马豆素,使之作为优质牧草被利用。节杆菌HW08被证实对苦马豆素具有稳定高效的降解能力。本研究以被公认为安全的食品级微生物的乳酸乳球菌作为表达载体,选取节杆菌HW08中的4个关键降解基因进行表达,并使用液相色谱法对其降解苦马豆素的能力进行了分析。结果显示,转化了乙醇脱氢酶A1R6C3基因的乳酸乳球菌经诱导后,提取的粗酶液在30℃条件下,24 h内能够降解约323.4 μg苦马豆素;转化了谷胱甘肽合酶、酯酶/酰基水解酶、糖基转移酶基因的乳酸乳球菌中提取的粗酶液单独作用时未表现出对于苦马豆素的降解能力,但混合后在同样条件下能够降解约140.5 μg苦马豆素。本研究为苦马豆素降解工程菌的临床推广提供了帮助,也为动物苦马豆素中毒的防治及疯草的脱毒利用提供了新的研究思路。

    Abstract:

    In order to mitigate the adverse effects of madrassa poisoning disease on our livestock industry and to fully utilize the potential pasture resources, biodegradation of locoweed can remove swainsonine, the major toxic component of locoweed, so that the locoweed can be used as high-quality forage. Arthrobacter nitroquajacolicus HW08 can stably and efficiently degrade swainsonine. In this study, Lactococcus lactis, as a food-grade microorganism, was used as a vector to express four key degradation genes from A. nitroquajacolicus HW08. Subsequently, liquid chromatography was employed to evaluate the swainsonine-degrading performance. The crude enzyme solution extracted from the L. lactis strain transformed with the ethanol dehydrogenase gene A1R6C3 degraded 323.4 μg of swainsonine in 24 h at 30 ℃. The crude enzyme solutions from the L. lactis strains transformed with the genes encoding glutathione synthase, esterase/acyl hydrolase, and glycosyltransferase did not show any degradation ability for swainsonine when being used alone but degraded about 140.5 μg of swainsonine when being used in mixture. The findings will help the clinical promotion of swainsonine-degrading engineering strains and provide new research ideas for the prevention and treatment of swainsonine poisoning in animals and the detoxification and utilization of locoweed.

    参考文献
    [1] MICHELOUD JF, MARIN R, COLQUE-CARO LA, MARTÍNEZ OG, GARDNER D, GIMENO EJ. Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Sida rodrigoi Monteiro in north-western Argentina[J]. Toxicon: Official Journal of the International Society on Toxinology, 2017, 128: 1-4.
    [2] 孙一丹. 苦马豆素对母畜繁殖机能的影响及防控[J]. 中国兽医学报, 2022, 42(2): 370-375.SUN YD. Effects and prevention of swainsonine on reproductive function of female livestock[J]. Chinese Journal of Veterinary Science, 2022, 42(2): 370-375(in Chinese).
    [3] 郭蓉, 郭亚洲, 王帅, 杨晨, 苏永霞, 吴晨晨, 路浩, 赵宝玉. 中国天然草地有毒植物及其放牧家畜中毒病研究进展[J]. 畜牧兽医学报, 2021, 52(5): 1171-1185.GUO R, GUO YZ, WANG S, YANG C, SU YX, WU CC, LU H, ZHAO BY. Advances in research on poisonous plants and grazing livestock poisoning diseases of natural grassland in China[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1171-1185(in Chinese).
    [4] 黄睿杰, 马永嘉, 赵世姣, 王帅, 吴晨晨, 路浩, 赵宝玉. 苦马豆素历史、来源及生物活性研究进展[J]. 中国兽医学报, 2022, 42(11): 2326-2336.HUANG RJ, MA YJ, ZHAO SJ, WANG S, WU CC, LU H, ZHAO BY. Review on history, source and bioactivity of swainsonine[J]. Chinese Journal of Veterinary Science, 2022, 42(11): 2326-2336(in Chinese).
    [5] 赵一宇, 吴莹, 赵影, 赖毕, 李勤凡. 山羊溶酶体α-甘露糖苷酶不同结构域片段的制备及酶活性的鉴定[J]. 中国兽医学报, 2022, 42(12): 2495-2499.ZHAO YY, WU Y, ZHAO Y, LAI B, LI QF. Expression and characterization of different domain fragments from Capra hircus lysosomal α-mannosidase[J]. Chinese Journal of Veterinary Science, 2022, 42(12): 2495-2499(in Chinese).
    [6] GRUM DS, COOK D, BAUCOM D, MOTT IW, GARDNER DR, CREAMER R, ALLEN JG. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens[J]. Journal of Natural Products, 2013, 76(10): 1984-1988.
    [7] MOLYNEUX RJ, McKENZIE RA, O’SULLIVAN BM, ELBEIN AD. Identification of the glycosidase inhibitors swainsonine and calystegine B2 in Weir vine (Ipomoea sp. Q6[aff. calobra]) and correlation with toxicity[J]. Journal of Natural Products, 1995, 58(6): 878-886.
    [8] TAN XM, CHEN AJ, WU B, ZHANG GS, DING G. Advance of swainsonine biosynthesis[J]. Chinese Chemical Letters, 2018, 29(3): 417-422.
    [9] WANG Y, ZHAI A, ZHANG Y, QIU K, WANG J, LI Q. Degradation of swainsonine by the NADP-dependent alcohol dehydrogenase A1R6C3 in Arthrobater sp. HW08[J]. Toxins (Basel), 2016, 8(5): 145.
    [10] 胡延春, 王妍, 杨国栋, 王建华. 节杆菌HW08降解SW相关基因的筛选与鉴定[C]//中国畜牧兽医学会2010年学术年会: 第二届中国兽医临床大会论文集(下册). 长春, 2010: 642-646.
    [11] AUBRY C, MICHON C, CHAIN F, CHVATCHENKO Y, GOFFIN L, ZIMMERLI SC, LEGUIN S, LANGELLA P, BERMUDEZ-HUMARAN L, CHATEL JM. Protective effect of TSLP delivered at the gut mucosa level by recombinant lactic acid bacteria in DSS-induced colitis mouse model[J]. Microbial Cell Factories, 2015, 14(1): 176.
    [12] ACUÑA L, CORBALÁN N, QUINTELA-BALUJA M, BARROS-VE楌愦湁慡??楴?嬻?嵑??呚栠敊??潂畅牌湌慏汍?潏映??椠潅汸潰杲楥捳慳汩??栠敯浦椠獴瑨牥礠???ひど???????????????の?????????扩牮?嬼??嵌?剣??乣???????唯?刾刼?刾佬??????刯?????????獳漠汵慳瑥椠潦湯??捣桯慮牴慲捯瑬敬物楮穧愠琼楩漾湌??慴湥摲?污漠捭慯汮楯穣慹瑴楯潧湥?潥晳??杩愾匠?乮??挼?举???慨?湲敩督?卩?丠??浬潩琼椯晩 ̄瀠汩慮渠瑭?桬祫摛牊潝氮愠獉敮?獥灲敮捡楴晩楯据?瑬漠??楩??朠慊癯敵???楬??椲?愲洰攬爠椱挰愴渺愠??椴?‵???汢敲愾晛?攳灝椠擦斑犹洬椠王寋?崬???漺甬爠溋愖汰?漠晵??砬瀠敾狞椭洮攠滍璔慢法‘?潳瑸慳渃秌???えょ??????ㄠㄊ???㈧????㈠?????戠爴?嬨财ㄩ崺?匵吶????????剉?????????匠?????偉?乎呇?剚??????佇?奓乊?唠塚?剁???卓攬爠畁浉?獌睚愮椠湏獰潴湩業湩敺?捴潩湯据攠湯瑦爠慥瑬楥潣湴?慯湰摯?慡汴灩桯慮?浥慦湦湩潣獩楥摮慣獹攠?慦挠琼楩瘾楌瑡祣?楯湣?捣慣瑵瑳氠敬?慣湴摩?猼栯敩放瀠?楳湩杮敧猠瑲楥湳杰??楳?传硳祵瑲牦潡灣楥猠?獥整牨楯捤敯慬??楹??慝渮搠??極??獡瑬爠慯杦愠汕畮獩?汥敲湳瑩楴杹椠湯潦猠畓獨??楧???氠潦捯潲眠敓散摩獥?季?崠???洠敔牥楣捨慮湯??潧畹爬渠愲氰?漸昬?嘴攰琨收爩椺渠愵父礶?刵攷猱攨慩牮挠桃???????????资???????????UX RJ, GARDNER DR, JAMES LF, COLEGATE SM. Polyhydroxy alkaloids: chromatographic analysis[J]. Journal of Chromatography A, 2002, 967(1): 57-74.
    [15] LEITSCH D, WILLIAMS CF, LLOYD D, DUCHÊNE M. Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites[J]. Experimental Parasitology, 2013, 134(3): 374-380.
    [16] ZARNT G, SCHRÄDER T, ANDREESEN JR. Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase[J]. Applied and Environmental Microbiology, 1997, 63(12): 4891-4898.
    [17] MOLOTKOV A, GHYSELINCK NB, CHAMBON P, DUESTER G. Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation[J]. The Biochemical Journal, 2004, 383(Pt 2): 295-302.
    [18] PAI CH, CHIANG BY, KO TP, CHOU CC, CHONG CM, YEN FJ, CHEN SJ, COWARD JK, WANG AHJ, LIN CH. Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase[J]. The EMBO Journal, 2006, 25(24): 5970-5982.
    [19] POPPENBERGER B, BERTHILLER F, LUCYSHYN D, SIEBERER T, SCHUHMACHER R, KRSKA R, KUCHLER K, GLÖSSL J, LUSCHNIG C, ADAM G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thal
    引证文献
引用本文

滕君洋,冯玉树,李勤凡,王妍. 节杆菌HW08降解苦马豆素关键基因在乳酸乳球菌中的表达及降解功能分析[J]. 生物工程学报, 2024, 40(10): 3666-3676

复制
分享
文章指标
  • 点击次数:126
  • 下载次数: 258
  • HTML阅读次数: 131
  • 引用次数: 0
历史
  • 收稿日期:2023-10-12
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司