一株1,4-二噁烷降解菌的分离及其降解性能解析
作者:
基金项目:

国家自然科学基金(41877504);江苏省碳达峰碳中和科技创新专项(BK20220004)


Isolation and degradation characterization of a 1,4-dioxane-degrading bacterial strain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为应对水环境中潜在致癌物质1,4-二噁烷(1,4-dioxane)的污染,本研究从1,4-二噁烷污染的地下水中,通过富集驯化、分离得到一株1,4-二噁烷高效降解菌株DXTK-010。经过形态学观察、16S rRNA基因序列比对以及基于全基因组的物种分类研究,鉴定该菌株为觧胺胺杆菌(Aminobacter aminovorans)。研究结果表明,该菌株具有较强的环境适应能力,在20−37℃及pH 5.0−8.0下均能有效降解1,4-二噁烷。单因素实验表明,在30℃、pH 7.5条件下降解性能最佳。在优选条件下,该菌株能在24 h内完全降解200 mg/L的1,4-二噁烷,最大降解速率达9.367 mg/(L·h)。菌株DXTK-010对1,4-二噁烷的降解动力学采用Monod方程进行拟合,其最大比降解速率(Vmax)为0.224 mg 1,4-dioxane/(mg protein·h),半饱和浓度(Ks)为41.350 mg/L,细胞产率(Y)为0.130 mg protein/(mg 1,4-dioxane),与已报道的降解菌相比,DXTK-010作为优异的降解菌株,扩充了生物修复1,4-二噁烷的菌株资源。全基因组测序揭示其完整基因组包括1条环状染色体和3个质粒。功能基因分析表明,丙烷单加氧酶基因簇和醇脱氢酶基因是其高效降解1,4-二噁烷的关键功能基因。本研究为DXTK-010实际应用于1,4-二噁烷污染修复提供了理论基础。

    Abstract:

    To address the potential pollution caused by the carcinogen 1,4-dioxane in aquatic environments, we isolated a highly efficient 1,4-dioxane-degrading bacterial strain, designated as DXTK-010, from the groundwater contaminated by 1,4-dioxane. According to the morphological characteristics, the phylogenetic tree established based on the 16S rRNA gene sequence, and the whole genome sequence, we identified DXTK-010 as Aminobacter aminovorans. This strain demonstrated robust degradation capacity within a temperature range of 20 ℃ to 37 ℃ and a pH range of 5.0 to 8.0. Furthermore, single-factor experiments indicated the optimal degradation conditions at 30 ℃ and pH 7.5. Under the optimal conditions, the strain completely degraded 200 mg/L of 1,4-dioxane within 24 h, achieving a maximum degradation rate of 9.367 mg/(L·h). The Monod equation was adopted to fit the degradation kinetics of 1,4-dioxane at different initial concentrations, which revealed a maximum specific degradation rate of 0.224 mg 1,4-dioxane/(mg protein·h), a half-saturation constant (Ks) of 41.350 mg/L, and a cell yield of 0.130 mg protein/(mg 1,4-dioxane). Whole genome sequencing revealed a circular chromosome and three plasmids within DXTK-010. Functional gene annotation and analysis underscored the significance of the propane monooxygenase gene cluster and alcohol dehydrogenase gene in facilitating the efficient degradation of 1,4-dioxane by this strain. DXTK-010 outperformed the existing degraders for 1,4-dioxane, expanding the strain resources for the bioremediation of 1,4-dioxane pollution. This study provides a theoretical basis for the practical application of DXTK-010 in the remediation of 1,4-dioxane pollution.

    参考文献
    [1] GÖEN T, von HELDEN F, ECKERT E, KNECHT U, DREXLER H, WALTER D. Metabolism and toxicokinetics of 1,4-dioxane in humans after inhalational exposure at rest and under physical stress[J]. Archives of Toxicology, 2016, 90(6): 1315-1324.
    [2] KIM D-H, BAMAI YA, BELOVA L, BESSEMS J, POMA G, COVACI A. Human exposure to persistent and mobile chemicals: a review of sources, internal levels and health implications[J]. Science of the Total Environment, 2023, 893: 164764.
    [3] TANG YY, MAO XW. Recent advances in 1,4-dioxane removal technologies for water and wastewater treatment[J]. Water, 2023, 15(8): 1535.
    [4] 田坤, 姚丹丹, 赵元添, 郭丽莉, 董元华, 刘云. 环境中1,4-二(口恶)烷污染处理技术研究进展[J]. 化工进展, 2021, 40(10): 5708-5719.TIAN K, YAO DD, ZHAO YT, GUO LL, DONG YH, LIU Y. Advances in 1,4-dioxane remediation methods: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5708-5719(in Chinese).
    [5] ZENKER MJ, BORDEN RC, BARLAZ MA. Occurrence and treatment of 1,4-dioxane in aqueous environments[J]. Environmental Engineering Science, 2003, 20(5): 423-432.
    [6] Liu Y, Johnson NW, Liu C, Chen RH, Zhong M, Dong YH, Mahendra S. Mechanisms of 1,4-dioxane biodegradation and adsorption by bio-zeolite in the presence of chlorinated solvents: experimental and molecular dynamics simulation studies[J]. Environmental Science & Technology, 2019, 53(24): 14538-14547.
    [7] GODRI POLLITT KJ, KIM JH, PECCIA J, ELIMELECH M, ZHANG YW, CHARKOFTAKI G, HODGES B, ZUCKER I, HUANG H, DEZIEL NC, MURPHY K, ISHII M, JOHNSON CH, BOISSEVAIN A, O’KEEFE E, ANASTAS PT, ORLICKY D, THOMPSON DC, VASILIOU V. 1,4-dioxane as an emerging water contaminant: state of the science and evaluation of research needs[J]. Science of the Total Environment, 2019, 690: 853-866.
    [8] KANO H, UMEDA Y, SAITO M, SENOH H, OHBAYASHI H, AISO S, YAMAZAKI K, NAGANO K, FUKUSHIMA S. Thirteen-week oral toxicity of 1,4-dioxane in rats and mice[J]. The Journal of Toxicological Sciences, 2008, 33(2): 141-153.
    [9] Kano H, Umeda Y, Kasai T, Sasaki t, Matsumoto m, Yamazaki K, Nagano k, Arito h, Fukushima s. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years[J]. Food and Chemical Toxicology, 2009, 47(11): 2776-2784.
    [10] International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans volume 71: re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide[EB/OL]. (1999) IARC Publications Website- Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide (part 1, part 2, part 3).
    [11] ADAMSON DT, PIÑA EA, CARTWRIGHT AE, RAUCH SR, ANDERSON RH, MOHR T, CONNOR JA. 1,4-dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule[J]. Science of the Total Environment, 2017, 596/597: 236-245.
    [12] KARGES U, BECKER J, PÜTTMANN W. 1,4-dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume[J]. Science of the Total Environment, 2018, 619/620: 712-720.
    [13] LESAGE S, JACKSON RE, PRIDDLE MW, RIEMANN PG. Occurrence and fate of organic solvent residues in anoxic groundwater at the Gloucester landfill, Canada[J]. Environmental Science & Technology, 1990, 24(4): 559-566.
    [14] Abe A. Distribution of 1,4-dioxane in relation to possible sources in the water environment[J]. Science of the Total Environment, 1999, 227(1): 41-47.
    [15] 鹿东华, 夏爱军. 废弃物填埋处理引起有害物质暴露量评价方法研究[J]. 中国环境管理, 2003(4): 39-40.LU DH, XIA AJ. Study of comment method uncovering area for harmful material coused by treatment of waste covering[J]. China Environmental Management, 2003(4): 39-40(in Chinese).
    [16] 王益民. 黄河兰州段水环境污染对鱼类毒性效应研究[D]. 兰州: 兰州大学博士学位论文, 2010.WANG YM. The toxic effects of contaminated water on fish species in Lanzhou section of the yellow river[D]. Lanzhou: Doctoral Dissertation of Lanzhou University, 2010(in Chinese).
    [17] World Health Organization. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda[EB/OL]. (2022-03-21) Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda (who.int).
    [18] United States Environmental Protection Agency. Technical fact sheet 1,4-dioxane[EB/OL]. (2017-11) Document Display|NEPIS|US EPA.
    [19] CHEN RH, LIU C, JOHNSON NW, ZHANG L, MAHENDRA S, LIU Y, DONG YH, CHEN MF. Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites[J]. Chemical Engineering Journal, 2019, 371: 193-202.
    [20] CASHMAN MA, KIRSCHENBAUM L, HOLOWACHUK J, BOVING TB. Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant[J]. Journal of Hazardous Materials, 2019, 380: 120875.
    [21] KIKANI M, SATASIYA GV, SAHOO TP, KUMAR PS, KUMAR MA. Remedial strategies for abating 1,4-dioxane pollution-special emphasis on diverse biotechnological interventions[J]. Environmental Research, 2022, 214(Pt 2): 113939.
    [22] BERNHARDT D, DIEKMANN H. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain[J]. Applied Microbiology and Biotechnology, 1991, 36(1): 120-123.
    [23] PARALES RE, ADAMUS JE, WHITE N, MAY HD. Degradation of 1,4-dioxane by an actinomycete in pure culture[J]. Applied and Environmental Microbiology, 1994, 60(12): 4527-4530.
    [24] LI MY, MATHIEU J, YANG Y, FIORENZA S, DENG Y, HE ZL, ZHOU JZ, ALVAREZ PJJ. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane[J]. Environmental Science & Technology, 2013, 47(17): 9950-9958.
    [25] MASUDA H, McCLAY K, STEFFAN RJ, ZYLSTRA GJ. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478[J]. Journal of Molecular Microbiology and Biotechnology, 2012, 22(5): 312-316.
    [26] INOUE D, TSUNODA T, SAWADA K, YAMAMOTO N, SAITO Y, SEI K, IKE M. 1,4-dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus[J]. Biodegradation, 2016, 27(4): 277-286.
    [27] MAHENDRA S, ALVAREZ-COHEN L. Kinetics of 1,4-dioxane biodegradation by monooxygenase- expressing bacteria[J]. Environmental Science & Technology, 2006, 40(17): 5435-5442.
    [28] SUN BZ, KO K, RAMSAY JA. Biodegradation of 1,4-dioxane by a Flavobacterium[J]. Biodegradation, 2011, 22(3): 651-659.
    [29] KIM YM, JEON JR, MURUGESAN K, KIM EJ, CHANG YS. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06[J]. Biodegradation, 2009, 20(4): 511-519.
    [30] 王樱凝. Xanthobacter dioxanivorans sp. nov.降解二恶烷的特性及其基因调控机制研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2022.WANG YN. Characteristics and gene regulation mechanism of 1,4-dioxane degradation by Xanthobacter dioxanivorans sp. nov.[D]. Harbin: Doctoral Dissertation of Harbin Institute of Technology, 2022(in Chinese).
    [31] SEI K, MIYAGAKI K, KAKINOKI T, FUKUGASAKO K, INOUE D, IKE M. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source[J]. Biodegradation, 2013, 24(5): 665-674.
    [32] ZHOU YY, HUANG HL, SHEN DS. Multi-substrate biodegradation interaction of 1,4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1[J]. Biodegradation, 2016, 27(1): 37-46.
    [33] DENG DY, PHAM DN, LI F, LI MY. Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic Azoarcus sp. strain DD4[J]. Applied and Environmental Microbiology, 2020, 86(17): e01163-20.
    [34] MA F, WANG YN, YANG JX, GUO HJ, SU DL, YU L. Degradation of 1,4-dioxane by Xanthobacter sp. YN2[J]. Current Microbiology, 2021, 78(3): 992-1005.
    [35] LI MY, MATHIEU J, LIU YY, van ORDEN ET, YANG Y, FIORENZA S, ALVAREZ PJJ. The abundance of tetrahydrofuran/dioxane monooxygenase genes (thmA/dxmA) and 1,4-dioxane degradation activity are significantly correlated at various impacted aquifers[J]. Environmental Science & Technology Letters, 2014, 1(1): 122-127.
    [36] DENG DY, LI F, LI MY. A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06[J]. Environmental Science & Technology Letters, 2018, 5(2): 86-91.
    [37] GROSTERN A, SALES CM, ZHUANG WQ, ERBILGIN O, ALVAREZ-COHEN L. Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190[J]. Applied and Environmental Microbiology, 2012, 78(9): 3298-3308.
    [38] XIONG Y, MASON OU, LOWE A, ZHOU C, CHEN G, TANG YN. Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation[J]. Applied and Environmental Microbiology, 2019, 85(11): e00244-e00219.
    [39] Huang HL, Shen DS, Li N, Shan D, Shentu JL, Zhou YY. Biodegradation of 1,4-dioxane by a novel strain and its biodegradation pathway[J]. Water, Air, & Soil Pollution, 2014, 225(9): 2135.
    [40] Dawes EA. Growth and Survival of Bacteria. In: Poindexter JS, Leadbetter ER (eds). Bacteria in Nature, vol 3.[M]. Boston, MA: Springer, 1989.
    [41] SIMMER RA, RICHARDS PM, EWALD JM, SCHWARZ C, Da SILVA MLB, MATHIEU J, ALVAREZ PJJ, SCHNOOR JL. Rapid metabolism of 1,4-dioxane to below health advisory levels by thiamine-amended Rhodococcus ruber strain 219[J]. Environmental Science & Technology Letters, 2021, 8(11): 975-980.
    [42] Shi L, Liang ZH, Li JR, Xu YC, Huang KL,Tian JJ, He XY, Xu WT. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14[J]. Journal of the Science of Food and Agriculture, 2014, 94(9): 1879-1885.
    [43] YE J, McGINNIS S, MADDEN TL. BLAST: improvements for better sequence analysis[J]. Nucleic Acids Research, 2006, 34(suppl_2): W6-W9.
    [44] QI MY, LIANG B, ZHANG L, MA X慄??楙??猠灌??獄瑏牎慇椠湗??丠噋???嬠?嵙???灈灁汎楇攠摌?愬渠摚??渠癈楚爬漠湇流敏渠瑓慈氬??楉捁牎潇戠楊潄氬漠杌祉???お??????????????????????戮爠?孩??嵯?????????乲???奩??坳????乶????健?剣噯?印?健???啣呡呴????????奯???晨晥攠捡瑮楴癩敢?牯整浩潣瘠慳汵?潦晡?瑥牴慨捯數?????搠楩潮砠慡湣整?扶祡?扥楤漠汳潬杵楤捧慥氠?瑩牣敲慯瑢浩敯湭瑥獳?慊畝朮洠故湮瑶敩摲?睮業瑥桮?灡牬漠灓慣湩潥瑮牣潥瀠栦楡捭?猻椠湔来汣敨?捯畬汯瑧畹爬攠′瘰攲爱猬甠猵‵猨礵温琺栠攳琲椷挰?挳漲游猲漮爼瑢楲甾浛嬴?嵝???潃畈牔湅慒氠?漬映??慓穓慅牌摌漦畏獡??慴瑥攻爭楍愦汏獡??摴癥愻湒捁攠獒???が???????ㄦくふ?????扎牅?嬠?水崠?坅?乌??奓丠????????奩?乳???堠???啥佢?????卥啲?????奰啲?????摯慴灩瑣椠潳湰?慣湩摥?搠散杩牲慣摵慭瑳楣潲湩?獴瑩牯慮琠敢条楳敥獤?潯普?浰敡瑩桲祷汩潳瑥爠潧灥桮楯捭?ㄠ???摰楡潲硩慳湯敮?摊敝朮爠慂摩楯湩杮?獯瑲牭慡楴湩??椬?堲愰渱琶栬漠戳愲挨琶攩爺??椲??猹瀳??夼乢? ̄牛攴瘶敝愠汁敕摃?戠祁?琬爠慶湯獮挠牊楁灎琠潍洬攠?獌捅慎汋攠?慐測愠汇礦獏極獭孬?嵋???湍琮攠牄湩慧瑩楴潡湬愠汄??漭畄牎湁愠汨?潢晲??潩決敡捴畩汯慮爠?卯捲椠敭湩捣敲獯???ぬ㈠????????????の?????扮爠?孹??嵥?偮啳??婦??乥??????副???卮????乳啥???????噣???乡?????奛?佝???呴???楡潲摤敳朠物慮搠慇瑥楮潯湭?潣映?????摣楥潳砬愠渲攰?戰礬??椨?利栺漠搱愱渷漭戱愳挴琮攼牢??楛???夠卄??慌湉摎?琠桁敃?爬漠汍敁?漠時?愠摂摌楁瑔楔潎湅慒氠?獒甬戠獐瑅牒慎瑁攠獎孔?崠???湶湥愺氠獭?潬晴??楬捥爠潡扬楩潧汮潭来祮???てㄠ????????????の????????扵牥?季??嵷??慨?卲??噲??????????奛????呇???啭??????噡?剣?娬?倲?????渱栴愨渷挩攺搠?氳漹渴札?琴攰爳洮?慢瑲琾敛渴甸慝琠楙潁湍?潍晏?????搠楓潁硉慔湏攠?椬渠?扎楏潕慅甠杄洬攠湓瑅敉搠?昬氠潉睋?琠桍爮漠畃杨桡?慡煣畴楥晲敩牺?捴潩汯畮洠湯獦嬠?嵥???椠潩摳敯杬牡慴摥慤琠椼潩渾???ふ?は?????????土ど???????戲爳?孷??嵨??卩???????啤????坮?????卲?????????????偛楊汝漮琠?瑯敵獲瑮?潬映?扦椠潂汩潯杳楣捩慥汮?牥攠浡潮癤愠求?潯晥?????摥楲潩确慧測攠′昰爱漸洬?愱′挵栨攵洩椺挠愵氵′昭愵挵琸漮爼祢?眾慛猴琹敝眠慈瑅攠牙?戠祍?杔效汉?捕愠牊爬椠教牁?敇渠瑙爬愠灙灕椠湐杆??楄??晓楉灌楖慁??楌??猠灁??獁瑒牅慚椠湐???嬠?崬???潩畯牸湡慮汥?潢晩??慥穧慲牡摤潡畴獩??愠瑢敹爠椼慩氾獍???ぢ?????ど????????????扯牰?孩??嵳???倾倠?么?估吶吠????即味副???剴?卤???却??????副???????乬???????匭呩佲副?传????卯呸????乡?剥????椠潅慮當杩浲敯湮瑭慥瑮楴潡湬?慓湣摩?灮牣潥瀠愦湡敭?戻椠潔獥灣慨牮杯楬湯杧?映潌牥??楥?楳測?猲椰琱男??椴??戱椩漺搠攴朹爴愭搴愹琹椮漼湢?漾晛‵????摅楎潇砠慄湙攬嬠?嵉???爠潗畕渠摃眬愠瑌敉爠??漮渠楓瑹潮牣楨湲杯??慣洠灢??剴敲浡敮摳楦慯瑲業潡湴?????????????????????d 1,1-dichloroethylene by a Gram-negative propanotroph Azoarcus sp. DD4[J]. Environmental Science & Technology Letters, 2018, 5(8): 526-532.
    [51] INOUE D, TSUNODA T, YAMAMOTO N, IKE M, SEI K. 1,4-dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343[J]. Biodegradation, 2018, 29(3): 301-310.
    [52] Urakami T. Aminobacter, in Bergey’s manual of systematics of archaea and bacteria[EB/OL]. (2015-09-14) Aminobacter-Urakami-Major Reference Works-Wiley Online Library.
    [53] HANCOCK TL, COSTELLO AM, LIDSTROM ME, OREMLAND RS. Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils[J]. Applied and Environmental Microbiology, 1998, 64(8): 2899-2905.
    [54] COULTER C, HAMILTON JT, McROBERTS WC, KULAKOV L, LARKIN MJ, HARPER DB. Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source[J]. Applied and Environmental Microbiology, 1999, 65(10): 4301-4312.
    [55] ARTUSO I, TURRINI P, PIROLO M, LUGLI GA, VENTURA M, VISCA P. Phylogenomic reconstruction and metabolic potential of the genus Aminobacter[J]. Microorganisms, 2021, 9(6): 1332.
    [56] GORODYLOVA N, MICHEL C, SERON A, JOULIAN C, DELORME F, BRESCH S, GARREAU C, GIOVANNELLI F, MICHEL K. Modified zeolite-supported biofilm in service of pesticide biodegradation[J]. Environmental Science and Pollution Research, 2021, 28(33): 45296-45316.
    [57] OSBORN RK, HAYDOCK PPJ, EDWARDS SG. Isolation and identification of oxamyl-degrading bacteria from UK agricultural soils[J]. Soil Biology and Biochemistry, 2010, 42(6): 998-1000.
    [58] ZHANG C, YANG Z, JIN W, WANG X, ZHANG Y, ZHU S, YU X, HU G, HONG Q. Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3[J]. Letters in Applied Microbiology, 2017, 64(4): 289-296.
    [59] YANG WL, DAI ZL, CHENG X, GUO L, FAN ZX, GE F, DAI YJ. Sulfoxaflor degraded by Aminobacter sp. CGMCC 1.17253 through hydration pathway mediated by nitrile hydratase[J]. Journal of Agricultural and Food Chemistry, 2020, 68(16): 4579-4587.
    [60] LI T, XU ZJ, ZHOU NY. Aerobic degradation of the antidiabetic drug metformin by Aminobacter sp. strain NyZ550[J]. Environmental Science & Technology, 2023, 57(3): 1510-1519.
    [61] HE Y, MATHIEU J, Da SILVA MLB, LI MY, ALVAREZ PJJ. 1,4-dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes[J]. Microbial Biotechnology, 2018, 11(1): 189-198.
    [62] 张甲耀, 宋碧玉, 陈兰洲, 郑连爽. 环境微生物学[M]. 武汉: 武汉大学出版社, 2008.ZHANG JY, SONG BY, CHEN LZ, ZHENG LS. Environmental Microbiology[M]. Wuhan: Wuhan University Press, 2008(in Chinese).
    [63] 陈燕飞. pH对微生物的影响[J]. 太原师范学院学报(自然科学版), 2009, 8(3): 121-124, 131.CHEN YF. pH to uygur biology influence[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2009, 8(3): 121-124, 131(in Chinese).
    [64] ROLFE MD, RICE CJ, LUCCHINI S, PIN C, THOMPSON A, CAMERON ADS, ALSTON M, STRINGER MF, BETTS RP, BARANYI J, PECK MW, HINTON JCD. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[J]. Journal of Bacteriology, 2012, 194(3): 686-701.
    [65] SAMADI A, POUR AK, GAGNON G. Biodegradation of 1,4-dioxane in a continuous-flow bioelectrochemical reactor by biofilm of Pseudonocardia dioxanivorans CB1190 and microbial community on conductive carriers[J]. Environmental Pollution, 2023, 337: 122572.
    [66] MAHENDRA S, PETZOLD CJ, BAIDOO EE, KEASLING JD, ALVAREZ-COHEN L. Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria[J]. Environmental Science & Technology, 2007, 41(21): 7330-7336.
    [67] HAND S, WANG BX, CHU KH. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene[J]. The Science of the Total Environment, 2015, 520: 154-159.
    [68] SHARP JO, SALES CM, LeBLANC JC, LIU J, WOOD TK, ELTIS LD, MOHN WW, ALVAREZ- COHEN L. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1[J]. Applied and Environmental Microbiology, 2007, 73(21): 6930-6938.
    [69] COLEMAN NV, BUI NB, HOLMES AJ. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments[J]. Environmental Microbiology, 2006, 8(7): 1228-1239.
    [70] VAINBERG S, McCLAY K, MASUDA H, ROOT D, CONDEE C, ZYLSTRA GJ, STEFFAN RJ. Biodegradation of ether pollutants by Pseudonocardi
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张玥,赵联芳,田坤,江煜,马瑞,刘云. 一株1,4-二噁烷降解菌的分离及其降解性能解析[J]. 生物工程学报, 2024, 40(10): 3722-3749

复制
分享
文章指标
  • 点击次数:105
  • 下载次数: 216
  • HTML阅读次数: 170
  • 引用次数: 0
历史
  • 收稿日期:2024-01-21
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第5990921位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司