衣藻中试修复稀土氨氮废水
作者:
基金项目:

福建省科技重大专项(2023YZ037002);福建省教育厅重点项目(2022G2013);福建省环保科技计划(2023R001)


Pilot-scale bioremediation of rare earths wastewater by Chlamydomonas sp. YC
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • | | | |
  • 文章评论
    摘要:

    硫酸铵介导的南方离子型稀土浸取开采产生了大量含高氨氮尾水,引发了严重的环境污染问题。本研究以从原始稀土氨氮尾水中分离到的衣藻(Chlamydomonas sp.) YC为出发藻株,选择50 L柱式光生物反应器(airlift photobioreactors,AL-PBRs)和5 m3开放式跑道池光生物反应器(open race-way photobioreactors,ORWPs)两种中试反应器,研究该藻户外处理稀土氨氮尾水(NH4+-N,约2 000 mg/L)的生长情况和尾水处理性能;此外,检测采收的藻粉氨基酸、脂肪酸等生化组分,评估其营养价值。结果表明,与ORWPs相比,衣藻YC在AL-PBRs中处理稀土氨氮尾水具有更高的生物量(1.1 g/L)、NH4+-N (24.9%)与总氮去除率(20.4%)和CO2的固定速率[125.0 mg/(L·d)]。对于藻粉生化组分方面,AL-PBRs和ORWPs获得的衣藻YC蛋白含量分别为44.5%和49.4%,油脂含量分别为9.1%和14.3%。同时,与大豆蛋白(0.657)相比,两种藻粉的必需氨基酸指数(essential amino acid indexes,EAAI)更高(均为0.900),这表明衣藻藻粉具有更好的营养价值。本研究的结果表明,衣藻YC中试柱式光生物反应器室外处理稀土氨氮尾水的工艺可能是一种潜在集成生物固碳、污水处理和藻粉开发的耦合技术。

    Abstract:

    The extraction of rare earth elements (REEs) through in-situ leaching with ammonium sulphate [(NH4)2SO4] had resulted in the production of a large volume of ammonium-rich wastewater, causing severe environmental pollution. This study aimed to assess the ability of an indigenous microalga Chlamydomonas sp. YC, isolated from REEs wastewater, to directly treat real REEs wastewater under outdoor conditions in 50 L airlift photobioreactors (AL-PBRs) and 5.0 m3 open race-way photobioreactors (ORWPs). Additionally, the harvested Chlamydomonas sp. YC biomasses from these two pilot photobioreactors were comprehensively analyzed to evaluate the nutritional values. The results showed that Chlamydomonas sp. YC in AL-PBRs exhibited higher biomass production (1.1 g/L), greater removal efficiencies in NH4+-N (24.9%) and total nitrogen (20.4%), as well as higher CO2 fixation rate (125.0 mg/(L·d)), compared to those of ORWPs. Moreover, the Chlamydomonas sp. YC biomasses obtained from the two pilot photobioreactors contained 44.5% and 49.4% protein, 9.1% and 14.3% lipids. Moreover, Chlamydomonas sp. YC in the two pilot photobioreactors displayed essential amino acid indexes (EAAI) of 0.900, which was higher than that of soybean protein (0.657), indicating superior nutritional values. In conclusion, the implementation of the process involving Chlamydomonas sp. YC in AL-PBRs under outdoor conditions holds promise as a coupled microalgal biotechnology for the simultaneous removal of NH4+-N from REEs wastewater, and the capture of CO2 for the production of valuable biomass.

    参考文献
    [1] OPARE EO, STRUHS E, MIRKOUEI A. A comparative state-of-technology review and future directions for rare earth element separation[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110917.
    [2] HUANG XW, LONG ZQ, WANG LS, FENG ZY. Technology development for rare earth cleaner hydrometallurgy in China[J]. Rare Metals, 2015, 34(4): 215-222.
    [3] 郑先坤, 冯秀娟, 陈哲, 朱易春. 离子型稀土原地浸矿废弃地中残存稀土分布规律及配分特征[J]. 稀土, 2020, 41(3): 60-67.ZHENG XK, FENG XJ, CHEN Z, ZHU YC. Study on distribution law and distribution characteristics of residual rare earth in ion-type rare earth in-situ leaching wasteland[J]. Chinese Rare Earths, 2020, 41(3): 60-67(in Chinese).
    [4] 郭钟群, 赵奎, 金解放, 王观石, 朱易春. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土, 2019, 40(3): 115-126.GUO ZQ, ZHAO K, JIN JF, WANG GS, ZHU YC. Reviews on environmental assessment and pollution prevention of ion adsorption type rare earth ores[J]. Chinese Rare Earths, 2019, 40(3): 115-126(in Chinese).
    [5] MANCHERI NA, SPRECHER B, BAILEY G, GE JP, TUKKER A. Effect of Chinese policies on rare earth supply chain resilience[J]. Resources, Conservation and Recycling, 2019, 142: 101-112.
    [6] YIN SH, CHEN KH, SRINIVASAKANNAN C, GUO SH, LI SW, PENG JH, ZHANG LB. Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology[J]. Chemical Engineering Journal, 2018, 337: 515-521.
    [7] ZHANG YK, XIONG ZS, YANG LM, REN Z, SHAO PH, SHI H, XIAO X, PAVLOSTATHIS SG, FANG LL, LUO XB. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater[J]. Water Research, 2019, 166: 115076.
    [8] 牛晓倩, 周胜虎, 邓禹. 脱氮微生物及脱氮工艺研究进展[J]. 生物工程学报, 2021, 37(10): 3505-3519.NIU XQ, ZHOU SH, DENG Y. Advances in denitrification microorganisms and processes[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3505-3519(in Chinese).
    [9] 杨晓秋, 吴寅嵩, 闫金定, 宋海刚, 范建华, 李元广. 基于文献计量学的微藻生物技术发展趋势[J]. 生物工程学报, 2015, 31(10): 1415-1436. YANG XQ, WU YS, YAN JD, SONG HG, FAN JH, LI YG. Trends of microalgal biotechnology: a view from bibliometrics[J]. Chinese Journal of Biotechnology, 2015, 31(10): 1415-1436(in Chinese).
    [10] ZHANG Q, YU ZG, ZHU LD, YE T, ZUO JL, LI XM, XIAO B, JIN SP. Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production[J]. Water Research, 2018, 139: 144-157.
    [11] MICHELS MHA, VASKOSKA M, VERMUE MH, WIJFFELS RH. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm[J]. Water Research, 2014, 65: 290-296.
    [12] RAEISOSSADATI M, VADIVELOO A, BAHRI PA, PARLEVLIET D, MOHEIMANI NR. Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond[J]. Journal of Applied Phycology, 2019, 31(4): 2311-2319.
    [13] MORILLAS-ESPAÑA A, LAFARGA T, SÁNCHEZ- ZURANO A, ACIÉN-FERNÁNDEZ FG, RODRÍGUEZ- MIRANDA E, GÓMEZ-SERRANO C, GONZÁLEZ- LÓPEZ CV. Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: assessment of biomass productivity and nutrient recovery capacity[J]. Algal Research, 2021, 60: 102500.
    [14] XUE CY, GAO K, QIAN PK, DONG JW, GAO Z, LIU QQ, CHEN B, DENG XY. Cultivation of Chlorella sorokiniana in a bubble-column bioreactor coupled with cooking cocoon wastewater treatment: effects of initial cell density and aeration rate[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2021, 83(11): 2615-2628.
    [15] ZHOU YC, HE YJ, ZHOU ZH, XIAO XH, WANG MZ, CHEN BL. A newly isolated microalga Chlamydomonas sp. YC to efficiently remove ammonium nitrogen of rare earth elements wastewater[J]. Journal of Environmental Management, 2022, 316: 115284.
    [16] ZHOU YC, HE YJ, XIAO XX, LIANG ZB, DAI JX, WANG MZ, CHEN BL. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species[J]. Bioresource Technology, 2022, 343: 125994.
    [17] AUSSANT J, GUIHÉNEUF F, STENGEL DB. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae[J]. Applied Microbiology and Biotechnology, 2018, 102(12): 5279-5297.
    [18] CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306.
    [19] ZHENG MM, DAI JX, JI XW, LI DG, HE YJ, WANG MZ, HUANG J, CHEN BL. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor[J]. Bioresource Technology, 2021, 340: 125703.
    [20] ARAYA M, GARCIA S, RENGEl J, PIZARRO S. Determination of free and protein amino acid content in microalgae by HPLC-DAD with pre-column derivatization and pressure hydrolysis[J]. Marine Chemistry, 2021(3): 103999.
    [21] ZHANG WH, WU J, WENG LY, ZHANG HJ, ZHANG J, WU AB. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate[J]. Carbohydrate Polymers, 2020, 227: 115332.
    [22] CHEN G-Q, JIANG Y, CHEN F. Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis[J]. Food Chemistry, 2007, 104(4): 1580-1585.
    [23] KÖHLER R, KARIUKI L, LAMBERT C, BIESALSKI HK. Protein, amino acid and mineral composition of some edible insects from Thailand[J]. Journal of Asia-Pacific Entomology, 2019, 22(1): 372-378.
    [24] MANTOVANI M, MARAZZI F, FORNAROLI R, BELLUCCI M, FICARA E, MEZZANOTTE V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP[J]. Science of the Total Environment, 2020, 710: 135583.
    [25] ZHU LD, WANG ZM, TAKALA J, HILTUNEN E, QIN L, XU ZB, QIN XX, YUAN ZH. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production[J]. Bioresource Technology, 2013, 137: 318-325.
    [26] LIU YQ, LIU ZC, CUI D, YANG LM, WANG HY, PAVLOSTATHIS S, GENG YN, XIONG ZS, SHAO PH, LUO XB, LUO SL. Buffered loofah supported microalgae-bacteria symbiotic (MBS) system for enhanced nitrogen removal from rare earth element tailings (REEs) wastewater: performance and functional gene analysis[J]. Chemosphere, 2023, 323: 138265.
    [27] SALBITANI G, CARFAGNA S. Ammonium utilization in microalgae: a sustainable method for wastewater treatment[J]. Sustainability, 2021, 13(2): 956.
    [28] CHHANDAMA MVL, SATYAN KB, CHANGMAI B, VANLALVENI C, LALTHAZUALA ROKHUM S. Microalgae as a feedstock for the production of biodiesel: a review[J]. Bioresource Technology Reports, 2021, 15: 100771.
    [29] CAI T, PARK SY, LI YB. Nutrient recovery from wastewater streams by microalgae: status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 360-369.
    [30] SUN YB, LU T, PAN YL, SHI MH, DING D, MA ZW, LIU JY, YUAN YP, FEI L, SUN YQ. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater[J]. Environmental Science and Ecotechnology, 2022, 12: 100204.
    [31] GONZALEZ-SALGADO I, GUIGUI C, SPERANDIO M. Transmembrane chemical absorption technology for ammonia recovery from wastewater: a critical review[J]. Chemical Engineering Journal, 2022, 444: 136491.
    [32] VIEGAS C, GOUVEIA L, GONCALVES M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy[J]. Journal of Environmental Management, 2021, 286: 112187.
    [33] AHMED SF, MOFIJUR M, PARISA TA, ISLAM N, KUSUMO F, INAYAT A, LE VG, BADRUDDIN IA, YUNUS KHAN TM, ONG HC. Progress and challenges of contaminate removal from wastewater using microalgae biomass[J]. Chemosphere, 2022, 286(Pt 1): 131656.
    [34] DARWISH R, GEDI MA, AKEPACH P, ASSAYE H, ZAKY AS, GRAY DA. Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform Chlorella and Spirulina[J]. Applied Sciences, 2020, 10(19): 6736.
    [35] 赵叶, 周小秋, 胡肄, 李家勇, 李欠, 冯琳, 姜维丹, 刘扬, 姜俊. 饲料中添加谷氨酸对生长中期草鱼肌肉品质的影响[J]. 动物营养学报, 2014, 26(11): 3452-3460.ZHAO Y, ZHOU XQ, HU Y, LI JY, LI Q, FENG L, JIANG WD, LIU Y, JIANG J. Effects of dietary glutamate on muscle quality of grass carp (Ctenopharyngodon idella) during middle growth period[J]. Chinese Journal of Animal Nutrition, 2014, 26(11): 3452-3460(in Chinese).
    [36] MARTÍNEZ-MACIAS MR, AGUILAR-RUIZ RJ, NATERAS-RAMÍREZ O, SÁNCHEZ-MACHADO DI, LÓPEZ-CERVANTES J, DÉVORA-ISIORDIA GE, ÁLVAREZ-SÁNCHEZ J, RÍOS-VÁZQUEZ NJ. Influence of different reactor types on Nannochloropsis oculata microalgae culture for lipids and fatty acid production[J]. Journal of the American Oil Chemists’ Society, 2021, 98(10): 993-1000.
    [37] KHOLIF AE, GOUDA GA, OLAFADEHAN OA, ABDO MM. Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile[J]. Animal, 2018, 12(5): 964-972.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭旭,周有彩,何勇锦,陈必链,王明兹. 衣藻中试修复稀土氨氮废水[J]. 生物工程学报, 2024, 40(10): 3781-3794

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-21
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第5997228位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司