小麦无机氮转运蛋白原核表达与纯化特点
作者:
基金项目:

国家自然科学基金(32071956);国家重点研发计划(2021YFD1700900);河南省自然科学基金(232300420193)


Prokaryotic expression and purification of inorganic nitrogen transporters in wheat
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    硝酸转运蛋白(nitrate transporter,NRT)与铵转运蛋白(ammonium transporter,AMT)是小麦无机氮素吸收、转运、分配的一类重要跨膜蛋白,获得NRT/AMT蛋白并制备其抗体有助于了解其组织定位特点,理解小麦的氮素利用过程。本研究从前期鉴定到的405个TaNRT/TaNPF基因和23个TaAMT基因中,筛选并克隆到了4个表达量较高的基因:TaNPF4.5TaNPF8.3TaNRT3.1TaAMT1.2。利用HMMER软件对4个转运蛋白进行跨膜结构域预测,确定拟表达区段,并进行原核表达和纯化。在37℃、1 mmol/L IPTG诱导条件下,非跨膜区段TaNPF4.5、TaNPF8.3、TaNRT3.1诱导4 h后表达量最大且为包涵体形式,TaAMT1.2诱导3 h后表达量最大,主要是可溶性表达。非跨膜区段TaNPF4.5、TaNPF8.3、TaNRT3.1采用pH梯度分离纯化,TaNPF4.5在pH 2.0时蛋白纯度约为87%,TaNPF8.3在pH 3.0时纯化蛋白纯度约为85%,均可用于抗体制备,TaNRT3.1的蛋白纯度未达到85%;TaAMT1.2采用咪唑梯度分离纯化,在咪唑浓度为20 mmol/L时纯度约95%,并成功制备了抗体。TaAMT1.2的表达纯化与抗体制备,为TaNPF4.5、TaNPF8.3等膜蛋白表达纯化及抗体制备提供了思路,为研究小麦膜蛋白表达与定位特点奠定了基础。

    Abstract:

    The nitrate transporter (NRT) and ammonium transporter (AMT) are crucial transmembrane proteins involved in the absorption, transport, and distribution of inorganic nitrogen in wheat. Obtaining NRT/AMT and preparing corresponding antibodies are conducive to probing into their tissue localization and comprehending the nitrogen utilization process in wheat. In this study, four genes (TaNPF4.5, TaNPF8.3, TaNRT3.1, TaAMT1.2) with high expression levels were chosen and cloned from 405 genes of the TaNRT/TaNPF family and 23 genes of the TaAMT family identified previously. The transmembrane domains of the four transporters were predicted by HMMER to determine the putative expression segments, followed by prokaryotic expression and purification. Under the induction with 1 mmol/L IPTG at 37 ℃, the non-transmembrane segments of TaNPF4.5, TaNPF8.3, and TaNRT3.1 reached the highest expression levels (as inclusion bodies) after 4 h, while TaAMT1.2 was expressed at the highest level (as a soluble protein) after 3 h. TaNPF4.5, TaNPF8.3, and TaNRT3.1 were purified by a pH gradient. The purity of TaNPF4.5 and TaNPF8.3 reached about 87% and 85% at pH 2.0 and pH 3.0, respectively, both of which were suitable for antibody preparation. However, the purity of TaNRT3.1 did not reach 85%. TaAMT1.2 was purified by an imidazole gradient, reaching the purity of about 95% at 20 mmol/L imidazole, and the antibody was prepared successfully. The expression, purification, and antibody preparation of TaAMT1.2 not only provides insights into the expression, purification, and antibody preparation of membrane proteins including TaNPF4.5 and TaNPF8.3 but also lays a foundation for studying the expression and localization of membrane proteins in wheat.

    参考文献
    [1] 姚海坡, 张经廷, 姚艳荣, 崔永增, 郑孟静, 崔江慧, 贾秀领. 长期定位条件下氮肥对优质小麦氮素利用率及产量的影响[J]. 江苏农业科学, 2023, 51(24): 71-77.YAO HP, ZHANG JY, YAO YR, CUI YZ, ZHENG MJ, CUI JH, JIA XL. Influences of nitrogen fertilizer on nitrogen use efficiency and yield of high-quality wheat under long-term location condition[J]. Jiangsu Agricultural Sciences, 2023, 51(24): 71-77(in Chinese).
    [2] ZHAN N, XU K, JI GX, YAN GX, CHEN BY, WU XM, CAI GQ. Research progress in high-efficiency utilization of nitrogen in rapeseed[J]. International Journal of Molecular Sciences, 2023, 24(9): 7752-7766.
    [3] 杨婷, 钟全林, 李宝银, 程栋梁, 徐朝斌, 邹宇星, 张雪, 周宗哲. 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响[J]. 应用生态学报, 2022, 33(1): 25-32.YANG T, ZHONG QL, LI BY, CHENG DL, XU CB, ZOU YX, ZHANG X, ZHOU ZZ. Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 25-32(in Chinese).
    [4] CAÑAS RA, QUILLERÉ I, GALLAIS A, HIREL B. Can genetic variability for nitrogen metabolism in the developing ear of maize be exploited to improve yield?[J]. The New Phytologist, 2012, 194(2): 440-452.
    [5] XU GH, FAN XR, MILLER AJ. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63: 153-182.
    [6] HAWKESFORD MJ. Genetic variation in traits for nitrogen use efficiency in wheat[J]. Journal of Experimental Botany, 2017, 68(10): 2627-2632.
    [7] TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use[J]. The New Phytologist, 2018, 217(1): 35-53.
    [8] MILLER AJ, CRAMER MD. Root nitrogen acquisition and assimilation[J]. Plant and Soil, 2005, 274(1): 1-36.
    [9] AMTMANN A, ARMENGAUD P. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis[J]. Current Opinion in Plant Biology, 2009, 12(3): 275-283.
    [10] 韦一昊. 小麦谷氨酰胺合成酶同工酶的定位、表达与功能研究[D]. 郑州: 河南农业大学博士学位论文, 2020.WEI YH. Study on cellular localization, expression and function of glutamine synthetase isozymes in wheat[D]. Zhengzhou: Doctoral Dissertation of Henan Agricultural University, 2020(in Chinese).
    [11] BAJGAIN P, RUSSELL B, MOHAMMADI M. Phylogenetic analyses and in-seedling expression of ammonium and nitrate transporters in wheat[J]. Scientific Reports, 2018, 8: 7082.
    [12] ALUKO OO, KANT S, ADEDIRE OM, LI CZ, YUAN G, LIU HB, WANG Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency[J]. Frontiers in Plant Science, 2023, 14: 1074839
    [13] LÉRAN S, VARALA K, BOYER JC, CHIURAZZI M, CRAWFORD N, DANIEL-VEDELE F, DAVID L, DICKSTEIN R, FERNANDEZ E, FORDE B, GASSMANN W, GEIGER D, GOJON A, GONG JM, HALKIER BA, HARRIS JM, HEDRICH R, LIMAMI AM, RENTSCH D, SEO M, et al. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants[J]. Trends in Plant Science, 2014, 19(1): 5-9.
    [14] OKAMOTO M, KUMAR A, LI WB, WANG Y, SIDDIQI MY, CRAWFORD NM, GLASS ADM. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1[J]. Plant Physiology, 2006, 140(3): 1036-1046.
    [15] LEZHNEVA L, KIBA T, FERIA-BOURRELLIER AB, LAFOUGE F, BOUTET-MERCEY S, ZOUFAN P, SAKAKIBARA H, DANIEL-VEDELE F, KRAPP A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal: for Cell and Molecular Biology, 2014, 80(2): 230-241.
    [16] HO CH, LIN SH, HU HC, TSAY YF. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.
    [17] HE YN, PENG JS, CAI Y, LIU DF, GUAN Y, YI HY, GONG JM. Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis[J]. Scientific Reports, 2017, 7: 6417.
    [18] TAL I, ZHANG Y, JORGENSEN ME, PISANTY O, BARBOSA ICR, ZOURELIDOU M, REGNAULT T, CROCOLL C, OLSEN CE, WEINSTAIN R, SCHWECHHEIMER C, HALKIER BA, NOUR-ELDIN HH, ESTELLE M, SHANI E. The Arabidopsis NPF3 protein is a GA transporter[J]. Nature Communications, 2016, 7: 11486.
    [19] KOMAROVA NY, THOR K, GUBLER A, MEIER S, DIETRICH D, WEICHERT A, SUTER GROTEMEYER M, TEGEDER M, RENTSCH D. AtPTR1 and AtPTR5 transport dipeptides in planta[J]. Plant Physiology, 2008, 148(2): 856-869.
    [20] KANNO Y, KAMIYA Y, SEO M. Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/ NRT1.2/AIT1 in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(12): e26624.
    [21] LOQUÉ D, WIRÉN NV. Regulatory levels for the transport of ammonium in plant roots[J]. Journal of Experimental Botany, 2004, 55(401): 1293-1305.
    [22] PORRAS-MURILLO R, ZHAO YF, HU JL, IJATO T, RETAMAL JP, LUDEWIG U, NEUHÄUSER B. The wheat AMT2(ammonium transporter) family, possible functions in ammonium uptake and pathogenic/symbiotic interactions[J]. Journal of Plant Nutrition and Soil Science, 2023, 186(2): 164-168.
    [23] WANG XC, WANG LL, ZHANG ZY, QIN BT, YU MQ, WEI YH, MA XM. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters[J]. Acta Agronomica Sinica, 2021, 47(4): 761-769.
    [24] WEI YH, XIONG SP, ZHANG ZY, MENG XD, WANG LL, ZHANG XJ, YU MQ, YU HD, WANG XC, MA XM. Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2021, 12: 580405.
    [25] WANG YY, HSU PK, TSAY YF. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
    [26] ALAUX M, ROGERS J, LETELLIER T, FLORES R, ALFAMA F, POMMIER C, MOHELLIBI N, DURAND S, KIMMEL E, MICHOTEY C, GUERCHE C, LOAEC M, LAINÉ M, STEINBACH D, CHOULET F, RIMBERT H, LEROY P, GUILHOT N, SALSE J, FEUILLET C, et al. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data[J]. Genome Biology, 2018, 19(1): 111.
    [27] FAN SC, LIN CS, HSU PK, LIN SH, TSAY YF. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9): 2750-2761.
    [28] MITANI-UENO N, YAMAJI N, HUANG S, YOSHIOKA Y, MIYAJI T, MA JF. A silicon transporter gene required for healthy growth of rice on land[J]. Nature Communications, 2023, 14: 6522.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韦一昊,王君君,能芙蓉,王露露,焦浩,肖福星,王小纯. 小麦无机氮转运蛋白原核表达与纯化特点[J]. 生物工程学报, 2024, 40(10): 3795-3809

复制
分享
文章指标
  • 点击次数:223
  • 下载次数: 330
  • HTML阅读次数: 177
  • 引用次数: 0
历史
  • 收稿日期:2023-12-10
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6035988位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司