靶向识别新型冠状病毒上刺突蛋白S1亚基的嵌合型E3泛素连接酶的设计与功能验证
作者:
基金项目:

天津市合成生物技术创新能力提升行动(TSBICIP-CXRC-048)


Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2
Author:
  • DAI Yan

    DAI Yan

    School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, National Innovation Centre for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Jiayu

    LIN Jiayu

    School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, National Innovation Centre for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiaoya

    ZHANG Xiaoya

    Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, National Innovation Centre for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;School of Pharmaceutical Sciences, Jilin University, Changchun 130012, Jilin, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Haorui

    LU Haorui

    Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, National Innovation Centre for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • RAO Lang

    RAO Lang

    Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, National Innovation Centre for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    刺突(spike, S)蛋白在新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)侵染宿主的过程中起着至关重要的作用,其中S1亚基的受体结合域(receptor binding domain, RBD)结构域与宿主的血管紧张素转换酶2 (angiotensin-converting enzyme 2, ACE2)受体结合,介导病毒侵入宿主细胞。因此,降解S1是预防SARS-CoV-2侵染的可行策略之一。本研究旨在开发一种针对S1的靶向降解工具。首先利用三质粒慢病毒系统构建了稳定表达S1的HEK 293细胞系,发现在该细胞系中过表达线粒体E3泛素连接酶1 (mitochondrial E3 ubiquitin protein ligase 1, MUL1)可以有效促进S1的泛素化修饰,并加速其通过蛋白酶体降解过程。进一步研究显示,MUL1催化的S1的多泛素修饰主要是以K48的侧链加成方式进行。此外,将特异性靶向识别S1的小肽LCB1与MUL1偶联,构建了嵌合型E3泛素连接酶LCB1-MUL1。研究发现,该嵌合酶活性依赖于MUL1,并且相比于MUL1,LCB1-MUL1表现出更高的催化效率,将胞内S1的蛋白质半衰期从12 h缩短至9 h。本研究阐明了MUL1通过催化S1的泛素化修饰并促进其通过蛋白酶体降解的机制,初步验证了针对S1蛋白设计的靶向降解嵌合酶LCB1-MUL1的有效性。

    Abstract:

    The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1’s half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.

    参考文献
    [1] WANG MY, ZHAO R, GAO LJ, GAO XF, WANG DP, CAO JM. SARS-CoV-2: structure, biology, and structure-based therapeutics development[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 587269.
    [2] JACKSON CB, FARZAN M, CHEN B, CHOE H. Mechanisms of SARS-CoV-2 entry into cells[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 3-20.
    [3] LIU HL, WEI PC, KAPPLER JW, MARRACK P, ZHANG GY. SARS-CoV-2 variants of concern and variants of interest receptor binding domain mutations and virus infectivity[J]. Frontiers in Immunology, 2022, 13: 825256.
    [4] POHL C, DIKIC I. Cellular quality control by the ubiquitin-proteasome system and autophagy[J]. Science, 2019, 366(6467): 818-822.
    [5] CLAGUE MJ, HERIDE C, URBÉ S. The demographics of the ubiquitin system[J]. Trends in Cell Biology, 2015, 25(7): 417-426.
    [6] NAKAMURA N. Ubiquitin system[J]. International Journal of Molecular Sciences, 2018, 19(4): 1080.
    [7] KWON YT, CIECHANOVER A. The ubiquitin code in the ubiquitin-proteasome system and autophagy[J]. Trends in Biochemical Sciences, 2017, 42(11): 873-886.
    [8] TRACZ M, BIALEK W. Beyond K48 and K63: non-canonical protein ubiquitination[J]. Cellular & Molecular Biology Letters, 2021, 26(1): 1.
    [9] PÉREZ-BENAVENTE B, NASRESFAHANI AF, FARRÀS R. Ubiquitin-regulated cell proliferation and cancer[J]. Advances in Experimental Medicine and Biology, 2020, 1233: 3-28.
    [10] NEKLESA TK, WINKLER JD, CREWS CM. Targeted protein degradation by PROTACs[J]. Pharmacology & Therapeutics, 2017, 174: 138-144.
    [11] BONDESON DP, SMITH BE, BURSLEM GM, BUHIMSCHI AD, HINES J, JAIME-FIGUEROA S, WANG J, HAMMAN BD, ISHCHENKO A, CREWS CM. Lessons in PROTAC design from selective degradation with a promiscuous warhead[J]. Cell Chemical Biology, 2018, 25(1): 78-87.e5.
    [12] REBOUD-RAVAUX M. Induced degradation of proteins by PROTACs and other strategies: towards promising drugs[J]. Biologie Aujourd’hui, 2021, 215(1/2): 25-43.
    [13] CALLE X, GARRIDO-MORENO V, LOPEZ-GALLARDO E, NORAMBUENA-SOTO I, MARTÍNEZ D, PEÑALOZA-OTÁROLA A, TRONCOSSI A, GUERRERO-MONCAYO A, ORTEGA A, MARACAJA-COUTINHO V, PARRA V, CHIONG M, LAVANDERO S. Mitochondrial E3 ubiquitin ligase 1(MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction[J]. IUBMB Life, 2022, 74(9): 850-865.
    [14] MIAO Y, DU Q, ZHANG HG, YUAN YK, ZUO YB, ZHENG H. Cycloheximide (CHX) chase assay to examine protein half-life[J]. Bio-protocol, 2023, 13(11): e4690.
    [15] NANDI D, TAHILIANI P, KUMAR A, CHANDU D. The ubiquitin-proteasome system[J]. Journal of Biosciences, 2006, 31(1): 137-155.
    [16] CHAZOTTE B. Labeling mitochondria with MitoTracker dyes[J]. Cold Spring Harbor Protocols, 2011, 2011(8): 990-992.
    [17] SHAID S, BRANDTS CH, SERVE H, DIKIC I. Ubiquitination and selective autophagy[J]. Cell Death and Differentiation, 2013, 20(1): 21-30.
    [18] CAO LX, GORESHNIK I, COVENTRY B, CASE JB, MILLER L, KOZODOY L, CHEN RE, CARTER L, WALLS L, PARK YJ, STEWART L, DIAMOND M, VEESLER D, BAKER D. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors[J]. BioRxiv: the Preprint Server for Biology, 2020: 2020.08.03.234914.
    [19] MURALIDAR S, AMBI SV, SEKARAN S, KRISHNAN UM. The emergence of COVID-19 as a global pandemic: understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2[J]. Biochimie, 2020, 179: 85-100.
    [20] HUANG HC, LAI YJ, LIAO CC, YANG WF, HUANG KB, LEE IJ, CHOU WC, WANG SH, WANG LH, HSU JM, SUN CP, KUO CT, WANG J, HSIAO TC, YANG PJ, LEE TA, HUANG W, LI FA, SHEN CY, LIN YL, et al. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro[J]. EBioMedicine, 2021, 74: 103712.
    [21] KAMEL NA, EL WAKEEL LM, ABOSHANAB KM. Exploring SARS-CoV-2 spikes glycoproteins for designing potential antiviral targets[J]. Viral Immunology, 2021, 34(8): 510-521.
    [22] RUAN LH, ZHOU CK, JIN EL, KUCHARAVY A, ZHANG Y, WEN ZH, FLORENS L, LI R. Cytosolic proteostasis through importing of misfolded proteins into mitochondria[J]. Nature, 2017, 543: 443-446.
    [23] LI J, QI W, CHEN G, FENG D, LIU JH, MA B, ZHOU CQ, MU CL, ZHANG WL, CHEN Q, ZHU YS. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy[J]. Autophagy, 2015, 11(8): 1216-1229.
    [24] LEE SO, LEE CK, RYU KS, CHI SW. The RING domain of mitochondrial E3 ubiquitin ligase 1 and its complex with Ube2D2: crystallization and X-ray diffraction[J]. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76(Pt 1): 1-7.
    [25] PURI R, CHENG XT, LIN MY, HUANG N, SHENG ZH. Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts[J]. Nature Communications, 2019, 10: 3645.
    [26] DIKIC I, SCHULMAN BA. An expanded lexicon for the ubiquitin code[J]. Nature Reviews Molecular Cell Biology, 2023, 24: 273-287.
    [27] CHATTERJEE P, PONNAPATI M, KRAMME C, PLESA AM, CHURCH GM, JACOBSON JM. Targeted intracellular degradation of SARS-CoV-2via computationally optimized peptide fusions[J]. Communications Biology, 2020, 3: 715.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代艳,林佳雨,张肖雅,逯浩睿,饶朗. 靶向识别新型冠状病毒上刺突蛋白S1亚基的嵌合型E3泛素连接酶的设计与功能验证[J]. 生物工程学报, 2024, 40(11): 4071-4083

复制
分享
文章指标
  • 点击次数:172
  • 下载次数: 232
  • HTML阅读次数: 245
  • 引用次数: 0
历史
  • 收稿日期:2024-03-05
  • 在线发布日期: 2024-11-07
  • 出版日期: 2024-11-25
文章二维码
您是第5987247位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司