基于多肽水凝胶材料的肿瘤类器官培养体系的建立
作者:
基金项目:

国家自然科学基金(32271483);国家重点研发计划(2021YFC2101400)


Development of a tumor organoid culture system with peptide-based hydrogels
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    多肽水凝胶是一类具有特殊网络结构的高分子材料,因其性质稳定、生物相容性良好等特点被广泛应用于生物医药领域。环境响应型自组装多肽水凝胶在环境改变时发生响应,多肽自组装形成纳米纤维网状结构,更好地模拟了细胞外基质和细胞生长微环境,可用于细胞的3D培养和类器官培养。为了建立CulX Ⅱ多肽水凝胶材料的肿瘤类器官培养体系,本研究选用了Panc-1、U87、H358细胞,采用半球体的培养方式,通过CulXⅡ多肽水凝胶材料包裹肿瘤细胞在24孔板中培养15 d。胰腺癌肿瘤类器官呈现出3D立体球体的形态,类器官大小随培养时间的延长而增大,最终直径大小为150−300 μm。肿瘤类器官数量较多、大小不一、细胞活力较好、边缘轮廓清晰、形态较好,培养比较成功。本研究在CulX Ⅱ多肽水凝胶材料基础上建立了肿瘤类器官模型,为研究肿瘤发病机制、新药研发、肿瘤抑制提供了研究模型。

    Abstract:

    Peptide-based hydrogel, the polymer materials with a special network structure, are widely used in various fields of biomedicine due to their stable properties and biocompatibility. Environment-responsive self-assembled peptide aqueous solutions can respond to environment changes by the self-assembly of peptides into nanofiber networks. Peptide-based hydrogels well simulate the extracellular matrix and cell growth microenvironment, being suitable for 3D cell culture and organoid culture. To establish a tumor organoid culture system with peptide-based hydrogels, we cultured Panc-1, U87, and H358 cells in a 3D spherical manner using CulX Ⅱ peptide-based hydrogels in 24-well plates for 15 days. The organoids showed a 3D spherical shape, and their sizes increased with the extension of the culture time, with a final diameter ranging from 150 to 300 μm. The organoids had a large number, varying sizes, good cell viability, clear edges, and a good shape, which indicated successful organoid construction. The tumor organoid culture system established in this study with CulX Ⅱ peptide-based hydrogels provides a model for studying tumor pathogenesis, drug development, and tumor suppression.

    参考文献
    [1] YU ZQ, XU Q, DONG CB, LEE SS, GAO LQ, LI YW, D’ORTENZIO M, WU J. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform[J]. Current Pharmaceutical Design, 2015, 21(29): 4342-4354.
    [2] AGARWAL R, GARCÍA AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[J]. Advanced Drug Delivery Reviews, 2015, 94: 53-62.
    [3] HE B, YUAN X, WU J, BAI Y, JIANG DM. Self-assembling peptide nanofiber scaffolds for bone tissue engineering[J]. Science of Advanced Materials, 2015, 7(7): 1221-1232.
    [4] JAYAWARNA V, ALI M, JOWITT T , MILLER A , SAIANI A, GOUGH J , ULIJN R . Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides[J]. Advanced Materials, 2006, 18(5): 611-614.
    [5] KOUTSOPOULOS S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications[J]. Journal of Biomedical Materials Research Part A, 2016, 104(4): 1002-1016.
    [6] LIU W, ZHANG WS, YU XQ, ZHANG GH, SU ZQ. Synthesis and biomedical applications of fluorescent nanogels[J]. Polymer Chemistry, 2016, 7(37): 5749-5762.
    [7] ZHOU M, SMITH AM, DAS AK, HODSON NW, COLLINS RF, ULIJN RV, GOUGH JE. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells[J]. Biomaterials, 2009, 30(13): 2523-2530.
    [8] JONKER AM, LÖWIK DWPM, van HEST JCM. Peptide- and protein-based hydrogels[J]. Chemistry of Materials, 2012, 24(5): 759-773.
    [9] PARAMONOV SE, JUN HW, HARTGERINK JD. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing[J]. Journal of the American Chemical Society, 2006, 128(22): 7291-7298.
    [10] TSONCHEV S, SCHATZ GC, RATNER MA. Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures[J]. The Journal of Physical Chemistry B, 2004, 108(26): 8817-8822.
    [11] de GROOT NS, PARELLA T, AVILES FX, VENDRELL J, VENTURA S. Ile-phe dipeptide self-assembly: clues to amyloid formation[J]. Biophysical Journal, 2007, 92(5): 1732-1741.
    [12] BOWERMAN CJ, LIYANAGE W, FEDERATION AJ, NILSSON BL. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity[J]. Biomacromolecules, 2011, 12(7): 2735-2745.
    [13] 王韵晴, 卢婷利, 陈婷, 马玉樊, 赵雯, 陈涛. 自组装多肽支架材料的研究进展[J]. 材料科学与工程学报, 2012, 30(2): 324-328, 311. WANG YQ, LU TL, CHEN T, MA YF, ZHAO W, CHEN T. Research advances in self-assembling peptide scaffolds[J]. Journal of Materials Science and Engineering, 2012, 30(2): 324-328, 311(in Chinese).
    [14] GONG CC, SUN SW, ZHANG YJ, SUN L, SU ZQ, WU AG, WEI G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale, 2019, 11(10): 4147-4182.
    [15] 杨桃, 孙宇, 陈佳佳, 刘清桂, 王敏君, 胡以平, 陈费. 类器官的研究进展[J]. 中国细胞生物学学报, 2019, 41(3): 494-500. YANG T, SUN Y, CHEN JJ, LIU QG, WANG MJ, HU YP, CHEN F. Advances in organoid technology[J]. Chinese Journal of Cell Biology, 2019, 41(3): 494-500(in Chinese).
    [16] van de WETERING M, FRANCIES HE, FRANCIS JM, BOUNOVA G, IORIO F, PRONK A, van HOUDT W, van GORP J, TAYLOR-WEINER A, KESTER L, MCLAREN-DOUGLAS A, BLOKKER J, JAKSANI S, BARTFELD S, VOLCKMAN R, van SLUIS P, LI VSW, SEEPO S, PEDAMALLU CS, CIBULSKIS K, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
    [17] DROST J, CLEVERS H. Organoids in cancer research[J]. Nature Reviews Cancer, 2018, 18: 407-418.
    [18] DIJKSTRA KK, CATTANEO CM, WEEBER F, CHALABI M, van de HAAR J, FANCHI LF, SLAGTER M, van der VELDEN DL, KAING S, KELDERMAN S, van ROOIJ N, van LEERDAM ME, DEPLA A, SMIT EF, HARTEMINK KJ, de GROOT R, WOLKERS MC, SACHS N, SNAEBJORNSSON P, MONKHORST K, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598.
    [19] PAULI C, HOPKINS BD, PRANDI D, SHAW R, FEDRIZZI T, SBONER A, SAILER V, AUGELLO M, PUCA L, ROSATI R, McNARY TJ, CHURAKOVA Y, CHEUNG C, TRISCOTT J, PISAPIA D, RAO RM, MOSQUERA JM, ROBINSON B, FALTAS BM, EMERLING BE, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discovery, 2017, 7(5): 462-477.
    [20] SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annual Review of Pathology, 2020, 15: 211-234.
    [21] ARTEGIANI B, CLEVERS H. Use and application of 3D-organoid technology[J]. Human Molecular Genetics, 2018, 27(R2): R99-R107.
    [22] NEAL JT, LI XN, ZHU JJ, GIANGARRA V, GRZESKOWIAK CL, JU JH, LIU IH, CHIOU SH, SALAHUDEEN AA, SMITH AR, DEUTSCH BC, LIAO L, ZEMEK AJ, ZHAO F, KARLSSON K, SCHULTZ LM, METZNER TJ, NADAULD LD, TSENG YY, ALKHAIRY S, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988.
    [23] NUCIFORO S, FOFANA I, MATTER MS, BLUMER T, CALABRESE D, BOLDANOVA T, PISCUOGLIO S, WIELAND S, RINGNALDA F, SCHWANK G, TERRACCIANO LM, NG CKY, HEIM MH. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Reports, 2018, 24(5): 1363-1376.
    [24] WANG K, YUEN ST, XU JC, LEE SP, YAN HHN, SHI ST, SIU HC, DENG SB, CHU KM, LAW S, CHAN KH, CHAN ASY, TSUI WY, HO SL, CHAN AKW, MAN JLK, FOGLIZZO V, NG MK, CHAN AS, CHING YP, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer[J]. Nature Genetics, 2014, 46: 573-582.
    [25] KIM M, MUN H, SUNG CO, CHO EJ, JEON HJ, CHUN SM, JUNG DJ, SHIN TH, JEONG GS, KIM DK, CHOI EK, JEONG SY, TAYLOR AM, JAIN S, MEYERSON M, JANG SJ. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nature Communications, 2019, 10: 3991.
    [26] CHANG SS. Re: tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. The Journal of Urology, 2019, 202(5): 865.
    [27] SACHS N, de LIGT J, KOPPER O, GOGOLA E, BOUNOVA G, WEEBER F, BALGOBIND AV, WIND K, GRACANIN A, BEGTHEL H, KORVING J, van BOXTEL R, DUARTE AA, LELIEVELD D, van HOECK A, ERNST RF, BLOKZIJL F, NIJMAN IJ, HOOGSTRAAT M, van de VEN M, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.
    [28] HUANG L, HOLTZINGER A, JAGAN I, BeGORA M, LOHSE I, NGAI N, NOSTRO C, WANG RN, MUTHUSWAMY LB, CRAWFORD HC, ARROWSMITH C, KALLOGER SE, RENOUF DJ, CONNOR AA, CLEARY S, SCHAEFFER DF, ROEHRL M, TSAO MS, GALLINGER S, KELLER G, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell-and patient-derived tumor organoids[J]. Nature Medicine, 2015, 21: 1364-1371.
    [29] BOJ SF, HWANG CI, BAKER LA, CHIO IIC, ENGLE DD, CORBO V, JAGER M, PONZ-SARVISE M, TIRIAC H, SPECTOR MS, GRACANIN A, ONI T, YU KH, van BOXTEL R, HUCH M, RIVERA KD, WILSON JP, FEIGIN ME, ÖHLUND D, HANDLY-SANTANA A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338.
    [30] DRIEHUIS E, KOLDERS S, SPELIER S, LÕHMUSSAAR K, WILLEMS S, DEVRIESE L, de BREE R, de RUITER ED, KORVING J, BEGTHEL H, van ES J, GEURTS V, HE GW, van JAARSVELD RV, OKA R, MURARO MJ, VIVIÉ J, ZANDVLIET M, HENDRICKX A, IAKOBACHVILI N, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy[J]. Cancer Discovery, 2019, 9(7): 852-871.
    [31] YAN HHN, SIU HC, LAW S, HO SL, YUE SSK, TSUI WY, CHAN D, CHAN AS, MA S, LAM KO, BARTFELD S, MAN AHY, LEE BCH, CHAN ASY, WONG JWH, CHENG PSW, CHAN AKW, ZHANG JW, SHI J, FAN XD, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.
    [32] CALANDRINI C, SCHUTGENS F, OKA R, MARGARITIS T, CANDELLI T, MATHIJSEN L, AMMERLAAN C, van INEVELD RL, DERAKHSHAN S, de HAAN S, DOLMAN E, LIJNZAAD P, CUSTERS L, BEGTHEL H, KERSTENS HHD, VISSER LL, ROOKMAAKER M, VERHAAR M, TYTGAT GAM, KEMMEREN P, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nature Communications, 2020, 11: 1310.
    [33] 李飞, 高栋. 类器官及其在肿瘤研究中的应用[J]. 中国细胞生物学学报, 2017, 39(4): 394-400. LI F, GAO D. Organoid and its application in cancer research[J]. Chinese Journal of Cell Biology, 2017, 39(4): 394-400(in Chinese).
    相似文献
    引证文献
引用本文

王慧斌,赵东东,张璐,魏占东,梁俊,毕昌昊. 基于多肽水凝胶材料的肿瘤类器官培养体系的建立[J]. 生物工程学报, 2024, 40(11): 4157-4170

复制
分享
文章指标
  • 点击次数:191
  • 下载次数: 297
  • HTML阅读次数: 204
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 在线发布日期: 2024-11-07
  • 出版日期: 2024-11-25
文章二维码
您是第5997184位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司