使用优化的信号肽和密码子在Expi293F细胞中高表达重链抗体可变区抗体
作者:
基金项目:

成都农业科技中心地方财政专项资金项目(NASC2024KR06);兰州市人才创业创新项目(2023-RC-3);国家自然科学基金(32072847,32072859,32301127);甘肃省重大科技专项(23ZDNA007);甘肃省自然科学基金(22JR5RA032,23JRRA551);中国博士后科学基金(2023M733819);甘肃省博士后专项项目(23JRRA554)


High expression of variable domain of heavy-chain antibodies in Expi293F cells with optimized signal peptide and codons
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | | | |
  • 文章评论
    摘要:

    重链抗体可变区抗体(variable domain of heavy-chain antibody, VHH)已被广泛用于药物治疗、诊断和研究。大肠杆菌是生产VHH最常用的表达系统,但可能会导致VHH的生物活性降低。哺乳动物细胞是目前最理想的VHH表达宿主之一。本研究通过优化VHH的信号肽(signal peptide, SP)和密码子,以期提高VHH在Expi293F细胞中的产量。VHH1-Fc被用于筛选SP,通过酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)筛选出的SP IFN-α2分泌效果最佳;通过提高基因的GC3和GC含量,VHH1的产量提高了约1倍,且对VHH1与A型塞内卡病毒(Senecavirus A, SVA)的结合活性无明显影响;其他5种重组VHHs分别连接SP IFN-α2并进行密码子优化,其平均产量大于191.6 mg/L。此外,这些VHHs在培养上清中具有高纯度和高回收率的优点。本研究证实SP IFN-α2和密码子优化可以在Expi293F细胞高效表达VHH,为VHH的大规模生产提供了参考。

    Abstract:

    The variable domain of heavy-chain antibody (VHH) has been developed widely in drug therapy, diagnosis, and research. Escherichia coli is the most popular expression system for VHH production, whereas low bioactivity occurs sometimes. Mammalian cells are one of the most ideal hosts for VHH expression at present. To improve the yield of VHH in Expi293F cells, we optimized the signal peptide (SP) and codons of VHH. Firstly, the fusion protein VHH1-Fc was used to screen SPs. The SP IFN-α2 showed the highest secretion as quantified by enzyme-linked immunosorbent assay (ELISA). Subsequently, codon optimization by improving GC3 and GC content doubled the yield of VHH1 and kept its binding activity to Senecavirus A (SVA). Finally, the mean yields of other 5 VHHs that fused with SP IFN-α2 and codon-optimized were over 191.6 mg/L, and these VHHs had high recovery and high purity in the culture supernatant. This study confirms that SP IFN-α2 and codon optimization could produce VHHs in Expi293F cells efficiently, which provides a reference for the large-scale production of VHHs.

    参考文献
    [1] JINDAL V, KHOURY J, GUPTA R, JAIYESIMI I. Current status of chimeric antigen receptor T-cell therapy in multiple myeloma[J]. American Journal of Clinical Oncology, 2020, 43(5): 371-377.
    [2] van der LINDEN RH, FRENKEN LG, de GEUS B, HARMSEN MM, RUULS RC, STOK W, de RON L, WILSON S, DAVIS P, VERRIPS CT. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies[J]. Biochimica et Biophysica Acta, 1999, 1431(1): 37-46.
    [3] de VOS J, DEVOOGDT N, LAHOUTTE T, MUYLDERMANS S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target[J]. Expert Opinion on Biological Therapy, 2013, 13(8): 1149-1160.
    [4] MUYLDERMANS S. Applications of nanobodies[J]. Annual Review of Animal Biosciences, 2021, 9: 401-421.
    [5] Oxford protein informatics group[DB/OL]. [2024-06- 01]. https://opig.stats.ox.ac.uk.
    [6] LIU YK, HUANG H. Expression of single-domain antibody in different systems[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 539-551.
    [7] BAKHERAD H, MOUSAVI GARGARI SL, RASOOLI I, RajabiBAZL M, MOHAMMADI M, EBRAHIMIZADEH W, SAFAEE ARDAKANI L, ZARE H. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH)[J]. Molecular Biotechnology, 2013, 55(2): 159-167.
    [8] DOLK E, van VLIET C, PEREZ JMJ, VRIEND G, DARBON H, FERRAT G, CAMBILLAU C, FRENKEN LGJ, VERRIPS T. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen[J]. Proteins, 2005, 59(3): 555-564.
    [9] ZARSCHLER K, WITECY S, KAPPLUSCH F, FOERSTER C, STEPHAN H. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2013, 12: 97.
    [10] SHARKER SM, RAHMAN A. A review on the current methods of Chinese hamster ovary (CHO) cells cultivation for the production of therapeutic protein[J]. Current Drug Discovery Technologies, 2021, 18(3): 354-364.
    [11] HACKER DL, KISELJAK D, RAJENDRA Y, THURNHEER S, BALDI L, WURM FM. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells[J]. Protein Expression and Purification, 2013, 92(1): 67-76.
    [12] YOU M, LIU YN, CHEN YW, GUO JY, WU J, FU YJ, SHEN R, QI R, LUO WX, XIA NS. Maximizing antibody production in suspension-cultured mammalian cells by the customized transient gene expression method[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(6): 1207-1213.
    [13] GUPTA K, PARASNIS M, JAIN R, DANDEKAR P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells[J]. Biotechnology Advances, 2019, 37(8): 107415.
    [14] WANG TY, GUO X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems[J]. Applied Microbiology and Biotechnology, 2020, 104(13): 5673-5688.
    [15] 郭笑然, 韩世充, 张小丽, 孙世琪, 马小军, 郭慧琛. A型塞尼卡病毒的分离鉴定及生物学特性研究[J]. 病毒学报, 2018, 34(5): 555-563. GUO XR, HAN SC, ZHANG XL, SUN SQ, MA XJ, GUO HC. Isolation, identification and biological characteristics of the Chinese strain of Senecavirus A[J]. Chinese Journal of Virology, 2018, 34(5): 555-563(in Chinese).
    [16] KOBER L, ZEHE C, BODE J. Optimized signal peptides for the development of high expressing CHO cell lines[J]. Biotechnology and Bioengineering, 2013, 110(4): 1164-1173.
    [17] BARASH S, WANG W, SHI YG. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression[J]. Biochemical and Biophysical Research Communications, 2002, 294(4): 835-842.
    [18] KUDLA G, LIPINSKI L, CAFFIN F, HELWAK A, ZYLICZ M. High guanine and cytosine content increases mRNA levels in mammalian cells[J]. PLoS Biology, 2006, 4(6): e180.
    [19] AGRAWAL V, SLIVAC I, PERRET S, BISSON L, ST-LAURENT G, MURAD Y, ZHANG JB, DUROCHER Y. Stable expression of chimeric heavy chain antibodies in CHO cells[J]. Methods in Molecular Biology, 2012, 911: 287-303.
    [20] O’KEEFE S, POOL MR, HIGH S. Membrane protein biogenesis at the ER: the highways and byways[J]. The FEBS Journal, 2022, 289(22): 6835-6862.
    [21] YOU M, YANG Y, ZHONG CQ, CHEN FT, WANG X, JIA TR, CHEN YZ, ZHOU B, MI QY, ZHAO QJ, AN ZQ, LUO WX, XIA NS. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR[J]. Applied Microbiology and Biotechnology, 2018, 102(14): 5953-5964.
    [22] WILKINSON C, KYLE J, IRIMPEN M, STUART S, MOHANDASS S, SHEPERD A, SMITH KJ, MULLIN MJ. Improved yield of recombinant human IFN-α2b from mammalian cells using heterologous signal peptide approach[J]. Protein Expression and Purification, 2022, 198: 106125.
    [23] ZHANG L, LENG QX, MIXSON AJ. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo[J]. The Journal of Gene Medicine, 2005, 7(3): 354-365.
    [24] YU CH, DANG YK, ZHOU ZP, WU C, ZHAO FZ, SACHS MS, LIU Y. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding[J]. Molecular Cell, 2015, 59(5): 744-754.
    [25] MORRISON C. Nanobody approval gives domain antibodies a boost[J]. Nature Reviews Drug Discovery, 2019, 18: 485-487.
    [26] JOMAA A, EITZINGER S, ZHU ZK, CHANDRASEKAR S, KOBAYASHI K, SHAN SO, BAN N. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle[J]. Cell Reports, 2021, 36(2): 109350.
    [27] ROMÁN R, MIRET J, SCALIA F, CASABLANCAS A, LECINA M, CAIRÓ JJ. Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide[J]. Journal of Biotechnology, 2016, 239: 57-60.
    [28] MAURO VP. Codon optimization in the production of recombinant biotherapeutics: potential risks and considerations[J]. BioDrugs, 2018, 32(1): 69-81.
    [29] HAN JH, CHOI YS, KIM WJ, JEON YH, LEE SK, LEE BJ, RYU KS. Codon optimization enhances protein expression of human peptide deformylase in E. coli[J]. Protein Expression and Purification, 2010, 70(2): 224-230.
    [30] FATH S, BAUER AP, LISS M, SPRIESTERSBACH A, MAERTENS B, HAHN P, LUDWIG C, SCHÄFER F, GRAF M, WAGNER R. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression[J]. PLoS One, 2011, 6(3): e17596.
    [31] PARVATHY ST, UDAYASURIYAN V, BHADANA V. Codon usage bias[J]. Molecular Biology Reports, 2022, 49(1): 539-565.
    [32] BUHR F, JHA S, THOMMEN M, MITTELSTAET J, KUTZ F, SCHWALBE H, RODNINA MV, KOMAR AA. Synonymous codons direct cotranslational folding toward different protein conformations[J]. Molecular Cell, 2016, 61(3): 341-351.
    [33] KIMCHI-SARFATY C, OH JM, KIM IW, SAUNA ZE, CALCAGNO AM, AMBUDKAR SV, GOTTESMAN MM. A “silent” polymorphism in the MDR1 gene changes substrate specificity[J]. Science, 2007, 315(5811): 525-528.
    [34] ZHAO FZ, YU CH, LIU Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells[J]. Nucleic Acids Research, 2017, 45(14): 8484-8492.
    [35] ZHOU M, WANG T, FU JJ, XIAO GH, LIU Y. Nonoptimal codon usage influences protein structure in intrinsically disordered regions[J]. Molecular Microbiology, 2015, 97(5): 974-987.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭书桢,董虎,潘颂佳,穆素雨,陈永杰,张韵,孙世琪,郭慧琛. 使用优化的信号肽和密码子在Expi293F细胞中高表达重链抗体可变区抗体[J]. 生物工程学报, 2024, 40(11): 4219-4227

复制
分享
文章指标
  • 点击次数:194
  • 下载次数: 521
  • HTML阅读次数: 211
  • 引用次数: 0
历史
  • 收稿日期:2023-11-05
  • 在线发布日期: 2024-11-07
  • 出版日期: 2024-11-25
文章二维码
您是第5997184位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司