半理性设计提高丁酰胆碱酯酶催化生长激素释放肽活性
作者:
基金项目:

重庆医药高等专科学校科研项目(ygz2021115)


Semi-rational design improves the catalytic activity of butyrylcholinesterase against ghrelin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    生长激素释放肽(ghrelin)是一种对于生长激素的分泌、食欲等具有重要调节作用的脑肠肽,还可调节体内糖脂代谢过程,已成为相关疾病治疗的研究热点。人体中的丁酰胆碱酯酶(human butyrylcholinesterase, hBChE)可将ghrelin水解为去酰基化状态,但是催化效率极低,限制了其应用。本研究通过HotSpot Wizard 3.0分析原核可溶性表达的hBChE突变体结构,理性选取10个新突变体,再对不同底物催化动力学与热力学稳定性进行测定,最终筛选出的新突变体E197D与A199S对于ghrelin催化水解活性分别上升4.6倍与3.5倍,为实现体外给药调节体内ghrelin进行相关疾病治疗提供了可能。

    Abstract:

    Ghrelin, a hormone mainly produced and released by the stomach, has numerous functions, including releasing growth hormones, regulating appetite, and processing sugar and lipids. Researchers have made great efforts to study the relationship between ghrelin and metabolic diseases. It is believed that human butyrylcholinesterase (hBChE) could hydrolyze ghrelin to the inactive form (desacyl-ghrelin). However, the low catalytic activity of wild hBChE against ghrelin hinders the clinical application. Recently, a soluble catalytically active hBChE mutant was successfully expressed in Escherichia coli for the first time. We then adopted HotSpot Wizard 3.0 to analyze the mutant structure and rationally selected 10 mutants. Furthermore, we determined the catalytic activities of the mutants against several substrates and the thermostability of these mutants. The results showed that the mutants E197D and A199S improved catalytic activity against ghrelin by 4.6 times and 3.5 times, respectively. The findings provide clues for treating endocrine diseases with the agents for regulating ghrelin.

    参考文献
    [1] AKALU Y, MOLLA MD, DESSIE G, AYELIGN B. Physiological effect of ghrelin on body systems[J]. International Journal of Endocrinology, 2020, 2020: 1385138.
    [2] CHEN VP, GAO Y, GENG LY, PARKS RJ, PANG YP, BRIMIJOIN S. Plasma butyrylcholinesterase regulates ghrelin to control aggression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2251-2256.
    [3] MURTUZA MI, ISOKAWA M. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus[J]. Journal of Neurochemistry, 2018, 144(1): 58-67.
    [4] AKAMIZU T, SHINOMIYA T, IRAKO T, FUKUNAGA M, NAKAI Y, NAKAI Y, KANGAWA K. Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new direct ELISA assay[J]. The Journal of Clinical Endocrinology & Metabolism, 2005, 90(1): 6-9.
    [5] GAUNA C, DELHANTY PJD, HOFLAND LJ, JANSSEN JAMJL, BROGLIO F, ROSS RJM, GHIGO E, van der LELY AJ. Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes[J]. The Journal of Clinical Endocrinology and Metabolism, 2005, 90(2): 1055-1060.
    [6] GORTAN CAPPELLARI G, ZANETTI M, SEMOLIC A, VINCI P, RUOZI G, FALCIONE A, FILIGHEDDU N, GUARNIERI G, GRAZIANI A, GIACCA M, BARAZZONI R. Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents[J]. Diabetes, 2016, 65(4): 874-886.
    [7] INHOFF T, MÖNNIKES H, NOETZEL S, STENGEL A, GOEBEL M, DINH QT, RIEDL A, BANNERT N, WISSER AS, WIEDENMANN B, KLAPP BF, TACHÉ Y, KOBELT P. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats[J]. Peptides, 2008, 29(12): 2159-2168.
    [8] GRUNWALD J, MARCUS D, PAPIER Y, RAVEH L, PITTEL Z, ASHANI Y. Large-scale purification and long-term stability of human butyrylcholinesterase: a potential bioscavenger drug[J]. Journal of Biochemical and Biophysical Methods, 1997, 34(2): 123-135.
    [9] CHATONNET A, LOCKRIDGE O. Comparison of butyrylcholinesterase and acetylcholinesterase[J]. Biochemical Journal, 1989, 260(3): 625-634.
    [10] HA ZY, MATHEW S, YEONG KY. Butyrylcholinesterase: a multifaceted pharmacological target and tool[J]. Current Protein & Peptide Science, 2020, 21(1): 99-109.
    [11] SUN H, PANG YP, LOCKRIDGE O, BRIMIJOIN S. Re-engineering butyrylcholinesterase as a cocaine hydrolase[J]. Molecular Pharmacology, 2002, 62(2): 220-224.
    [12] CHEN VP, GAO Y, GENG LY, BRIMIJOIN S. Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues[J]. Biochemical Pharmacology, 2015, 98(4): 732-739.
    [13] BRAZZOLOTTO X, IGERT A, GUILLON V, SANTONI G, NACHON F. Bacterial expression of human butyrylcholinesterase as a tool for nerve agent bioscavengers development[J]. Molecules, 2017, 22(11): 1828.
    [14] ELLMAN GL, COURTNEY KD, ANDRES V Jr, FEATHER-STONE RM. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochemical Pharmacology, 1961, 7: 88-95.
    [15] SAXENA A, BELINSKAYA T, SCHOPFER LM, LOCKRIDGE O. Characterization of butyrylcholinesterase from porcine milk[J]. Archives of Biochemistry and Biophysics, 2018, 652: 38-49.
    [16] GAO Y, LaFleur D, Shahb R, ZHAO QH, SINGH M, BRIMIJOIN S. An albumin-butyrylcholinesterase for cocaine toxicity and addiction: catalytic and pharmacokinetic properties[J]. Chemico-Biological Interactions, 2008, 175(1/2/3): 83-87.
    [17] DAFFERNER AJ, LUSHCHEKINA S, MASSON P, XIAO GP, SCHOPFER LM, LOCKRIDGE O. Characterization of butyrylcholinesterase in bovine serum[J]. Chemico-Biological Interactions, 2017, 266: 17-27.
    [18] KUTZNER C, PÁLL S, FECHNER M, ESZTERMANN A, de GROOT BL, GRUBMÜLLER H. More bang for your buck: improved use of GPU nodes for GROMACS 2018[J]. Journal of Computational Chemistry, 2019, 40(27): 2418-2431.
    [19] BREZOVSKY J, KOZLIKOVA B, DAMBORSKY J. Protein Engineering: Methods and Protocols[M]. Berlin: Springer Nature, 2018: 25-42.
    [20] SUMBALOVA L, STOURAC J, MARTINEK T, BEDNAR D, DAMBORSKY J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information[J]. Nucleic Acids Research, 2018, 46(W1): W356-W362.
    [21] BOECK AT, SCHOPFER LM, LOCKRIDGE O. DNA sequence of butyrylcholinesterase from the rat: expression of the protein and characterization of the properties of rat butyrylcholinesterase[J]. Biochemical Pharmacology, 2002, 63(12): 2101-2110.
    [22] LOCKRIDGE O, BLONG RM, MASSON P, FROMENT MT, MILLARD CB, BROOMFIELD CA. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase[J]. Biochemistry, 1997, 36(4): 786-795.
    [23] GUERRA R, BIANCONI ML. Increased stability and catalytic efficiency of yeast hexokinase upon interaction with zwitterionic micelles. kinetics and conformational studies[J]. Bioscience Reports, 2000, 20(1): 41-49.
    [24] ALEXANDROV AI, MILENI M, CHIEN EYT, HANSON MA, STEVENS RC. Microscale fluorescent thermal stability assay for membrane proteins[J]. Structure, 2008, 16(3): 351-359.
    [25] VICTORINO Da SILVA AMATTO I, GONSALES Da ROSA-GARZON N, ANTÔNIO de OLIVEIRA SIMÕES F, SANTIAGO F, PEREIRA Da SILVA LEITE N, RASPANTE MARTINS J, CABRAL H. Enzyme engineering and its industrial applications[J]. Biotechnology and Applied Biochemistry, 2022, 69(2): 389-409.
    [26] SONG ZD, ZHANG QF, WU WH, PU ZJ, YU HR. Rational design of enzyme activity and enantioselectivity[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1129149.
    [27] KOUBA P, KOHOUT P, HADDADI F, BUSHUIEV A, SAMUSEVICH R, SEDLAR J, DAMBORSKY J, PLUSKAL T, SIVIC J, MAZURENKO S. Machine learning-guided protein engineering[J]. ACS Catalysis, 2023, 13(21): 13863-13895.
    [28] ILYUSHIN DG, HAERTLEY OM, BOBIK TV, SHAMBORANT OG, SURINA EA, KNORRE VD, MASSON P, SMIRNOV IV, GABIBOV AG, PONOMARENKO NA. Recombinant human butyrylcholinesterase as a new-age bioscavenger drug: development of the expression system[J]. Acta Naturae, 2013, 5(1): 73-84.
    [29] BRAZZOLOTTO X, WANDHAMMER M, RONCO C, TROVASLET M, JEAN L, LOCKRIDGE O, RENARD PY, NACHON F. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure[J]. The FEBS Journal, 2012, 279(16): 2905-2916.
    [30] GEYER BC, KANNAN L, CHERNI I, WOODS RR, SOREQ H, MOR TS. Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase[J]. Plant Biotechnology Journal, 2010, 8(8): 873-886.
    [31] PAIVA dos SANTOS B, GARBAY B, PASQUA M, CHEVRON E, CHINOY ZS, CULLIN C, BATHANY K, LECOMMANDOUX S, AMÉDÉE J, OLIVEIRA H, GARANGER E. Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications[J]. Journal of Biotechnology, 2019, 298: 35-44.
    [32] LU D, LIU S, WU Y, WU FF, TAN T, LI QY. Expression of recombinant human butyrylcholinesterase in the milk of transgenic mice[J]. Frontiers of Agricultural Science and Engineering, 2014, 1(3): 179-184.
    [33] PUETZ J, WURM FM. Recombinant proteins for industrial versus pharmaceutical purposes: a review of process and pricing[J]. Processes, 2019, 7(8): 476.
    [34] YU HR, YAN YH, ZHANG C, DALBY PA. Two strategies to engineer flexible loops for improved enzyme thermostability[J]. Scientific Reports, 2017, 7: 41212.
    [35] POLIZZI KM, BOMMARIUS AS, BROERING JM, CHAPARRO-RIGGERS JF. Stability of biocatalysts[J]. Current Opinion in Chemical Biology, 2007, 11(2): 220-225.
    [36] KAWASHIMA K, FUJII T. Extraneuronal cholinergic system in lymphocytes[J]. Pharmacology & Therapeutics, 2000, 86(1): 29-48.
    [37] KAWASHIMA K, FUJII T, MORIWAKI Y, MISAWA H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function[J]. Life Sciences, 2012, 91(21/22): 1027-1032.
    [38] GRANDO SA, KAWASHIMA K, WESSLER I. A historic perspective on the current progress in elucidation of the biologic significance of non-neuronal acetylcholine[J]. International Immunopharmacology, 2020, 81: 106289.
    [39] LI B, STRIBLEY JA, TICU A, XIE W, SCHOPFER LM, HAMMOND P, BRIMIJOIN S, HINRICHS SH, LOCKRIDGE O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse[J]. Journal of Neurochemistry, 2000, 75(3): 1320-1331.
    [40] 黄瑛, 姜华, 李路路, 李伟, 王欣, 霍艳. 生物技术药物免疫原性评价的技术发展概述[J]. 药物评价研究, 2017, 40(7): 999-1004. HUANG Y, JIANG H, LI LL, LI W, WANG X, HUO Y. Technology development of immunogenicity assessment for biopharmaceuticals[J]. Drug Evaluation Research, 2017, 40(7): 999-1004(in Chinese).
    [41] 肖杰文, 韩瑾, 乔郅钠, 张国栋, 黄武军, 钱凯, 徐美娟, 张显, 杨套伟, 饶志明. 植物乳杆菌谷氨酸脱羧酶催化pH范围的理性改造及高效转化生产γ-氨基丁酸[J]. 生物工程学报, 2023, 39(6): 2108-2125. XIAO JW, HAN J, QIAO ZN, ZHANG GD, HUANG WJ, QIAN K, XU MJ, ZHANG X, YANG TW, RAO ZM. Efficient biosynthesis of γ-aminobutyric acid by rationally engineering the catalytic pH range of a glutamate decarboxylase from Lactobacillus plantarum[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2108-2125(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡应婷,张天竹,林凤云. 半理性设计提高丁酰胆碱酯酶催化生长激素释放肽活性[J]. 生物工程学报, 2024, 40(11): 4228-4241

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 244
  • HTML阅读次数: 243
  • 引用次数: 0
历史
  • 收稿日期:2024-03-05
  • 在线发布日期: 2024-11-07
  • 出版日期: 2024-11-25
文章二维码
您是第6027306位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司