苹果MdPEPC基因家族鉴定及在腋芽萌发中的作用
作者:
基金项目:

河北省教育厅科学技术研究项目(BJK2022012);河北省省属高校基本科研业务费研究项目(KY2021054);河北农业大学人才引进科研专项(YJ2020034)


Genome-wide identification and effect of MdPEPC family genes during axillary bud outgrowth in apple (Malus domestica Borkh.)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxykinase,PEPC)家族蛋白普遍存在各种植物中,在光合碳同化过程中起到重要作用,同时具有多种非光合生物学功能,但PEPC基因在苹果(Malus domestica Borkh.)中尚未研究报道。本研究以苹果新基因组数据为基础,利用生物信息学方法对苹果PEPC家族成员(the members of apple PEPC family,MdPEPC)进行鉴定,并对其在不同组织中的表达谱以及去顶和细胞分裂素噻重氮苯基脲(thidazuron,TDZ)处理后苹果腋芽转录组中的表达模式进行分析,以期探究MdPEPC基因在参与苹果腋芽萌发中的作用。结果表明,苹果MdPEPC家族共有6个成员,分布于6条不同的染色体上,且理化特征较为相似;系统进化树及序列比对分析显示其可分为2个亚组(Group Ⅰ和Group Ⅱ),其中Ⅰ组含4个MdPEPC家族成员,属于植物型PEPCs,而MdPEPC4和MdPEPC5则与拟南芥细菌型AtPPC4聚类到Ⅱ组;共线性分析表明,MdPEPC成员之间不存在串联重复,含7对片段重复;顺式作用元件分析显示,MdPEPC家族成员不仅受光和逆境等影响,还受多种激素综合调控;表达谱显示,除MdPEPC4MdPEPC5外,其他植物型MdPEPC在不同组织中均有表达。转录组数据分析表明,去顶和TDZ处理后MdPEPC1MdPEPC3表达量上调,而MdPEPC2则在处理后48 h明显下调表达。综上所述,本研究通过对苹果MdPEPC家族的鉴定和分析,筛选出MdPEPC1MdPEPC2MdPEPC3作为调控苹果腋芽萌发的候选基因,以便后期对其进行深入研究。

    Abstract:

    The PEPC family proteins are ubiquitous in various plants and play an important role in the process of photosynthetic carbon assimilation and have many non-photosynthetic biological functions. However, PEPC genes have not been reported in apple. In this study, the members of apple MdPEPC family were identified based on the new apple genome data by bioinformatics analysis, and their expression patterns in different tissues and the apple axillary bud transcriptome treated by decapitation and TDZ (cytokinin) were analyzed in order to explore the role of MdPEPC genes in apple axillary bud outgrowth. The results showed that 6 MdPEPC family members were identified in apple, which distributed on 6 different chromosomes, and had similar physicochemical characteristics. Phylogenetic tree and sequence alignment analysis showed that the MdPEPC could be divided into two subgroups (Group Ⅰ and Group Ⅱ), in which four members in MdPEPC family were clustered into Group Ⅰ, belonging to plant-type PEPCs. However, MdPEPC4 and MdPEPC5 were clustered into Group Ⅱ with AtPPC4, belonging to bacterial-type PEPCs. There were 7 pairs of fragments repeats among MdPEPC members, but no tandem repeats existed. The promoter cis-acting element analysis showed that MdPEPC genes were not only affected by light and stress, but also regulated by multiple hormones. The expression profiles showed that all MdPEPCs except MdPEPC4 and MdPEPC5 were expressed in different apple tissues. Transcriptome data analysis showed that the expression levels of MdPEPC1 and MdPEPC3 were up-regulated after decapitation and TDZ treatment, whereas MdPEPC2 was significantly down-regulated at 48 h after treatments. In conclusion, MdPEPC1, MdPEPC2 and MdPEPC3 were selected as the candidate genes involved in axillary bud outgrowth regulation for further study.

    参考文献
    [1] O'Leary B, Park J, Plaxton WC. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase):recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436(1):15-34.
    [2] Izui K, Matsumura H, Furumoto T, et al. Phosphoenolpyruvate carboxylase:a new era of structural biology. Annu Rev Plant Biol, 2004, 55(1):69-84.
    [3] Guillet C, Just D, Bénard N, et al. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta, 2002, 214(5):717-726.
    [4] Sweetman C, Deluc LG, Cramer GR, et al. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70(11/12):1329-1344.
    [5] Cousins AB, Baroli I, Badger MR, et al. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol, 2007, 145(3):1006-1017.
    [6] Cheng G, Wang L, Lan HY. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microb Technol, 2016, 83(11):57-67.
    [7] Perotti VE, Figueroa CM, Andreo CS, et al. Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs. Plant Sci, 2010, 179(5):527-535.
    [8] Østergaard L, Kempin SA, Bies D, et al. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4(1):45-51.
    [9] 彭文丽, 刘照宇, 李晓波, 等. 杧果PEPC基因家族全基因组鉴定及表达分析. 中国南方果树, 2021, 50(6):37-46. Peng WL, Liu ZY, Li XB, et al. Genome-wide identification and expression analysis of PEPC gene family in mango. South China Fruits, 2021, 50(6):37-46(in Chinese).
    [10] Sánchez R, Cejudo FJ. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003, 132(2):949-957.
    [11] 杨成超, 王红, 朱建军, 等. 杨梅PEPC基因家族全基因组鉴定及表达分析. 分子植物育种, 2022:1-9. (2022-04-26). https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1517.018.html. Yang CC, Wang H, Zhu JJ, et al. Genome-wide identification and expression analysis of PEPC gene family in waxberry (Myrica rubra L.). Mol Plant Breed, 2022:1-9. (2022-04-26). https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1517.018.html (in Chinese).
    [12] 门小鹏, 许雪峰, 王玉斌, 等. 我国苹果生产的现状、问题与发展对策. 农村实用技术, 2022(1):25-27+59. Men XP, Xu XF, Wang YB, et al. The present situation, problems and development countermeasures of apple production in our country. Rural Practical Technology, 2022(1):25-27, 59. (in Chinese).
    [13] Kim HK, Van Oosterom E, Dingkuhn M, et al. Regulation of tillering in Sorghum:environmental effects. Ann Bot, 2010, 106(1):57-67.
    [14] Kebrom TH, Mullet JE. Photosynthetic leaf area modulates tiller bud outgrowth in Sorghum. Plant Cell Environ, 2015, 38(8):1471-1478.
    [15] Chen CJ, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13(8):1194-1202.
    [16] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31(13):3784-3788.
    [17] Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30(1):325-327.
    [18] Da LL, Liu Y, Yang JT, et al. AppleMDO:a multi-dimensional omics database for apple co-expression networks and chromatin states. Front Plant Sci, 2019, 10:1333.
    [19] Wang R, Zhao P, Kong N, et al. Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes (Basel), 2018, 9(1):E54.
    [20] 李相辰, 沈旭, 周新成, 等. 木薯PEPC基因家族成员鉴定及表达分析. 作物学报, 2022, 48(12):3108-3119. (2022-04-19). https://kns.cnki.net/kcms/detail/11.1809.S.20220416.2200.002.html. Li XC, Shen X, Zhou XC, et al. Identification and relative expression levels of PEPC gene family members in cassava. Acta Agron Sin, 2022:48(12):3108-3119. (in Chinese).
    [21] Chollet R, Vidal J, O'Leary MH. Phosphoenolpyruvate carboxylase:a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:273-298.
    [22] Vidal J, Chollet R. Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci, 1997, 2(6):230-237.
    [23] Hartwell J, Gill A, Nimmo GA, et al. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J, 1999, 20(3):333-342.
    [24] Nimmo HG. The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci, 2000, 5(2):75-80.
    [25] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci, 2005, 10(2):88-94.
    [26] Rameau C, Bertheloot J, Leduc N, et al. Multiple pathways regulate shoot branching. Front Plant Sci, 2015, 5:741.
    [27] Carmo-Silva AE, Bernardes Da Silva A, Keys AJ, et al. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth Res, 2008, 97(3):223-233.
    [28] Bandyopadhyay A, Datta K, Zhang J, et al. Enhanced photosynthesis rate in genetically engineered indica rice expressing PEPC gene cloned from maize. Plant Sci, 2007, 172(6):1204-1209.
    [29] Sánchez R, Flores A, Cejudo FJ. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223(5):901-909.
    [30] 马海洋, 赵秋芳, 陈曙, 等. 菠萝PEPC基因家族生物信息学分析. 热带作物学报, 2020, 41(1):97-103. Ma HY, Zhao QF, Chen S, et al. Bioinformatics analysis of PEPC gene family in pineapple. Chin J Trop Crops, 2020, 41(1):97-103(in Chinese).
    [31] 彭文丽, 杨成坤, 崔志富, 等. 榴莲PEPC基因家族全基因组鉴定及表达分析. 分子植物育种, 2022, 20(1):76-85. Peng WL, Yang CK, Cui ZF, et al. Genome-wide identification and expression analysis of PEPC gene family in durian (Durio zibethinus Murr.). Mol Plant Breed, 2022, 20(1):76-85(in Chinese).
    [32] 王岳坤, 阳江华, 丁丽, 等. 橡胶树PEPC基因的克隆、生物信息学和表达分析. 西南农业学报, 2017, 30(11):2436-2443. Wang YK, Yang JH, Ding L, et al. Cloning, bio-informatics and expression analysis of PEPC gene from Hevea brasiliensis. Southwest China J Agric Sci, 2017, 30(11):2436-2443(in Chinese).
    [33] Law RD, Plaxton WC. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit. Biochem J, 1995, 307(3):807-816.
    [34] 高凯, 朱铁霞, 邓波, 等. 顶端优势去除对菊芋物质分配规律的影响. 中国草地学报, 2016, 38(1):14-19. Gao K, Zhu TX, Deng B, et al. The influence of removal of apical dominance on matter allocation in Jerusalem artichoke. Chin J Grassland, 2016, 38(1):14-19(in Chinese).
    [35] 武慧, 吕杰, 付智坤, 等. TDZ对微型月季不定芽生长的影响. 湖北农业科学, 2013, 52(13):3178-3179, 3202. Wu H, Lv J, Fu ZK, et al. Effect of TDZ on adventitious bud growth of Rosa chinensis minima. Hubei Agric Sci, 2013, 52(13):3178-3179, 3202(in Chinese).
    [36] 王洪霞, 郭尚敬. TDZ对甜椒不定芽分化的影响. 北方园艺, 2012(3):104-106. Wang HX, Guo SJ. Effect of TDZ on adventitious bud differentiation of sweet pepper. North Hortic, 2012(3):104-106(in Chinese).
    [37] 孙洪雁, 陶吉寒, 辛力, 等. TDZ和BA对金花梨和鸭梨叶片不定芽再生的影响. 山东农业科学, 2016, 48(1):26-28, 39. Sun HY, Tao JH, Xin L, et al. Effects of TDZ and BA on adventitious bud regeneration from leaf explants of pear cultivars Jinhua and yali. Shandong Agric Sci, 2016, 48(1):26-28, 39(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李九洋,时聪健,孙亚硕,高彩桢,张曜辉,檀鸣,梁博文. 苹果MdPEPC基因家族鉴定及在腋芽萌发中的作用[J]. 生物工程学报, 2022, 38(10): 3728-3739

复制
分享
文章指标
  • 点击次数:323
  • 下载次数: 1518
  • HTML阅读次数: 1042
  • 引用次数: 0
历史
  • 收稿日期:2022-05-16
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第5985434位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司