大豆GolS基因家族鉴定及盐旱胁迫下的表达分析
作者:
基金项目:

国家自然科学基金(31871661)


Identification of soybean GolS gene family and analysis of expression patterns under salt and drought stresses
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肌醇半乳糖苷合成酶(galactinol synthase,GolS)是棉子糖家族寡糖(raffinose family oligosaccharides,RFOs)生物合成途径中的关键酶,在植物对非生物胁迫的反应中发挥重要作用。然而,关于大豆(Glycine maxGolS基因家族成员的分子结构特征还未见研究报道。本研究在全基因组水平上鉴定了6个大豆GolS基因家族成员,并对其理化性质、染色体定位、进化关系、基因结构、保守基序、二级结构、三级结构、组织特异性表达模式以及盐和干旱胁迫下的表达量进行了分析。结果表明:6个大豆GolS基因不均匀地分布在4条染色体上,6个大豆GolS蛋白的等电点为5.45-6.08,分子量变化范围为37 567.07-38 817.59 Da,氨基酸数量为324-339 aa;亚细胞定位预测结果发现4个蛋白定位在叶绿体上,2个蛋白定位在细胞质。系统进化树分析表明,大豆GolS基因家族成员在进化树中呈现出两两紧邻的现象,在进化上较为保守。6个基因成员含有的外显子数目为3或4。二级结构和三级结构预测表明,该家族所有成员蛋白质的空间结构主要由α螺旋和无规则卷曲结构组成,有较少的β转角结构和延伸链结构。组织特异性表达分析表明,6个GmGolS家族成员在种子、根、根毛、花、茎、豆荚、根瘤和叶中均有不同程度表达。基于qRT-PCR的表达分析显示,盐旱处理后所有GmGolS基因成员表现出不同程度的上调表达,表明这些基因可能与植物的耐盐抗旱响应有关。本研究结果为后续开展大豆GolS基因的功能解析奠定了基础。

    Abstract:

    Galactinol synthase (GolS) is a key enzyme in the biosynthetic pathway of raffinose family oligosaccharides (RFOs) and plays an important role in plant responses to abiotic stresses. However, the molecular characteristics of the GolS family members in soybean was not well-known. In this study, six members of GmGolS gene family were genome-widely identified, and their physicochemical properties, chromosomal localization, evolutionary relationship, gene structure, conserved motifs, secondary structure, tertiary structure, tissue-specific expression patterns and the expression levels under salt and drought stresses were analyzed. The results showed that six soybean GolS genes were unevenly distributed on four chromosomes, the range of the isoelectric points of six GmGolS proteins was 5.45-6.08, the molecular weight range was 37 567.07-38 817.59 Da, and the number of amino acids was 324-339 aa. The results of subcellular localization showed that 4 proteins were located in the chloroplast, and 2 proteins in the cytoplasm. Phylogenetic tree analysis showed that the members of the soybean GolS gene family were closely adjacent to each other, and were evolutionarily conservative. Six gene members contain 3 or 4 exons. Prediction of secondary and tertiary structures showed that the spatial structure of proteins of all family members was mainly composed of α-helix and random coil structure, with less β-turn and extended chain structure. Tissue-specific expression analysis showed that six GmGolS members expressed to variable degrees in seeds, roots, root hairs, flowers, stems, pods, nodules and leaves. Expression analysis based on qRT-PCR showed that all GmGolS genes showed different degrees of up-regulated expression under salt and drought treatment, indicating that these genes may be related to the response of plants to salt-tolerance and drought-resistance. These results may facilitate subsequent functional analysis of soybean GolS genes.

    参考文献
    [1] Wang WX, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta, 2003, 218(1):1-14.
    [2] Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235(6):1091-1105.
    [3] Wang WX, Vinocur B, Shoseyov O, et al. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. Acta Hortic, 2001(560):285-292.
    [4] Albini FM, Murelli C, Finzi PV, et al. Galactinol in the leaves of the resurrection plant Boea hygroscopica. Phytochemistry, 1999, 51(4):499-505.
    [5] Collett H, Shen A, Gardner M, et al. Towards transcript profiling of desiccation tolerance in Xerophyta humilis:construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol Plant, 2004, 122(1):39-53.
    [6] Gechev TS, Dinakar C, Benina M, et al. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci, 2012, 69(19):3175-3186.
    [7] Peters S, Mundree SG, Thomson JA, et al. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker):both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot, 2007, 58(8):1947-1956.
    [8] 余箬芊, 王福祥, 郑燕梅, 等. 植物棉子糖家族寡糖(RFOs)在种子活力及非生物胁迫中的生物学功能研究进展. 福建农业学报, 2022, 37(1):114-122. Yu RQ, Wang FX, Zheng YM, et al. Research advances on the biological function of raffinose families oligosaccharides in seed vigor and abiotic stress. Fujian J Agric Sci, 2022, 37(1):114-122(in Chinese).
    [9] Cho SM, Kang EY, Kim MS, et al. Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis thaliana. Botany, 2010, 88(5):452-461.
    [10] Kim MS, Cho SM, Kang EY, et al. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol Plant Microbe Interact, 2008, 21(12):1643-1653.
    [11] Gu L, Zhang YM, Zhang MS, et al. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A. Plant Mol Biol, 2016, 90(1-2):157-170.
    [12] Salvi P, Kamble NU, Majee M. Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol, 2017, 59(1):155-166.
    [13] Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol, 2008, 147(3):1251-1263.
    [14] ElSayed AI, Rafudeen MS, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants:protection against abiotic stress. Plant Biol, 2014, 16(1):1-8.
    [15] Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J, 2002, 29(4):417-426.
    [16] Mukherjee S, Sengupta S, Mukherjee A, et al. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta, 2019, 249(3):891-912.
    [17] 邱爽, 张军, 何佳琦, 等. 大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定. 江苏农业学报, 2021, 37(1):38-43. Qiu S, Zhang J, He JQ, et al. Expression of soybean GmGolS2-1 induced by heat stress and identification of transgenic tobacco. Jiangsu J Agric Sci, 2021, 37(1):38-43(in Chinese).
    [18] Liu L, Wu XL, Sun WB, et al. Galactinol synthase confers salt-stress tolerance by regulating the synthesis of galactinol and raffinose family oligosaccharides in poplar. Ind Crops Prod, 2021, 165:113432.
    [19] Fan YH, Yu MN, Liu M, et al. Genome-wide identification, evolutionary and expression analyses of the GALACTINOL SYNTHASE gene family in rapeseed and tobacco. Int J Mol Sci, 2017, 18(12):2768.
    [20] De Gois EHB, Menegazzo RF, dos Santos TB, et al. Identification, evolutionary and expression analysis of the galactinol synthase (GolS) genes in Panicum virgatum L. and Panicum hallii:an in silico approach. Plant Gene, 2020, 24:100262.
    [21] You J, Wang Y, Zhang Y, et al. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Sci Reports, 2018, 8(1):4331.
    [22] Selvaraj MG, Ishizaki T, Valencia M, et al. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol J, 2017, 15(11):1465-1477.
    [23] Huang TW, Luo XL, Fan ZP, et al. Genome-wide identification and analysis of the sucrose synthase gene family in cassava (Manihot esculenta Crantz). Gene, 2021, 769:145191.
    [24] Zhuo CL, Wang T, Lu SY, et al. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant, 2013, 149(1):67-78.
    [25] Zhou Y, Liu Y, Wang SS, et al. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. J Agric Food Chem, 2017, 65(13):2751-2759.
    [26] Liu YD, Zhang L, Chen LJ, et al. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus. Sci Rep, 2016, 6:36113.
    [27] 盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题. 中国工程科学, 2003, 5(5):1-6. Gai JY. Expanding and enhancing the research allocation on soybean breeding and genetics for the establishment of market supply based on domestic production. Eng Sci, 2003, 5(5):1-6(in Chinese).
    [28] Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4(4):406-425.
    [29] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7):1870-1874.
    [30] Chen C, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020(8):1194-1202.
    [31] Du YT, Zhao MJ, Wang CT, et al. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol, 2018, 18(1):320.
    [32] 张军, 邱爽, 何佳琦, 等. 大豆GmGolS基因植物表达载体构建及烟草遗传转化. 齐齐哈尔大学学报(自然科学版), 2020, 36(6):22-25. Zhang J, Qiu S, He JQ, et al. Plant expression vector construction and tobacco genetic transformation of soybean GmGolS gene. J Qiqihar Univ (Nat Sci Ed), 2020, 36(6):22-25(in Chinese).
    [33] Wiggins CA, Munro S. Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. PNAS, 1998, 95(14):7945-7950.
    [34] Gibbons BJ, Roach PJ, Hurley TD. Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J Mol Biol, 2002, 319(2):463-477.
    [35] Persson K, Ly HD, Dieckelmann M, et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol, 2001, 8(2):166-175.
    [36] Wang YG, Liu HH, Wang SP, et al. Overexpression of a common wheat gene GALACTINOL SYNTHASE3 enhances tolerance to zinc in Arabidopsis and rice through the modulation of reactive oxygen species production. Plant Mol Biol Report, 2016, 34(4):794-806.
    [37] Filiz E, Ozyigit II, Vatansever R. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Comput Biol Chem, 2015, 58:149-157.
    [38] 李铭杨, 邱爽, 何佳琦, 等. 大豆GmGolS1的克隆及转基因烟草耐高温性鉴定. 植物遗传资源学报, 2022, 23(2):575-582. Li MY, Qiu S, He JQ, et al. Cloning of soybean GmGolS1 and identification of heat resistance in transgenic tobacco. J Plant Genet Resour, 2022, 23(2):575-582(in Chinese).
    [39] Falavigna VDS, Porto DD, Miotto YE, et al. Evolutionary diversification of galactinol synthases in Rosaceae:adaptive roles of galactinol and raffinose during apple bud dormancy. J Exp Bot, 2018, 69(5):1247-1259.
    [40] Zhou J, Yang Y, Yu J, et al. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J Plant Res, 2014, 127(2):347-358.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘丹,王柯蔼,倪蓬,王秋艳,朱康,危文亮. 大豆GolS基因家族鉴定及盐旱胁迫下的表达分析[J]. 生物工程学报, 2022, 38(10): 3757-3772

复制
分享
文章指标
  • 点击次数:355
  • 下载次数: 1437
  • HTML阅读次数: 1177
  • 引用次数: 0
历史
  • 收稿日期:2022-06-07
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第5985435位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司