基于转录组的肝豆状核变性调控网络的构建和分析
作者:
基金项目:

北京市博士后工作经费资助项目(2021-ZZ-012);北京友谊医院科研启动基金资助项目(yyqdkt2020-52)


Construction and analysis of transcriptome-based hepatolenticular degeneration regulatory network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在利用生物信息学方法构建经铜诱导的ATP7B基因敲除HepG2细胞系的转录调控网络。探讨关键转录因子在肝豆状核变性发生、发展中的潜在作用机制。收集公共基因表达数据库(gene expression omnibus,GEO)中包含野生型、ATP7B基因敲除型、铜诱导的野生型和铜诱导的ATP7B基因敲除型HepG2细胞系数据。筛选由铜诱导产生的差异表达基因(differentially expressed genes,DEGs)后进行基因本体论(gene ontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)富集分析。基于蛋白相互作用网络,识别疾病关键基因和功能模块,并对关键功能模块中的基因进行富集分析。最后,构建转录调控网络,筛选核心转录因子。共筛选出1 034个差异表达基因,其中上调525个,下调509个。上、下调关键功能模块分别包括了3 785个和3 931个基因。关键功能模块中的基因主要定位于细胞-基质连接、染色体、剪接复合体、核糖体等区域,共同参与了mRNA加工、组蛋白修饰、RNA剪切、DNA代谢调节、蛋白磷酸化等生物学过程,且与转录共调控活性、DNA转录因子结合、泛素样蛋白连接酶结合等分子功能相关。KEGG分析表明功能模块中的基因显著富集的通路包括乙型肝炎、有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路、细胞衰老和凋亡、神经营养信号通路和神经变性途径等。肝豆状核变性转录调控网络包括11个差异表达转录因子和96个差异表达基因,其中U2AF1、NFRKB、FUS、MAX、SRSF1、CEBPA和RXRA为核心差异表达转录因子。该研究为肝豆状核变性转录调控相关分子的生物学功能研究提供了重要的参考依据。

    Abstract:

    A transcriptional regulatory network for wild-type and ATP7B-knockout HepG2 cells exposed to copper was constructed by bioinformatics methods to explore the potential mechanism of key transcription factors in the pathogenesis of hepatolenticular degeneration. The differentially expressed genes (DEGs) for wild-type and ATP7B-knockout HepG2 cell lines without copper and exposed to copper were collected from the gene expression omnibus (GEO) database. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were performed for DEGs induced by copper. The key functional modules and genes were identified based on the protein-protein interaction (PPI) network. Moreover, the enrichment analysis of genes in functional modules was performed. Finally, a transcriptional regulatory network was constructed to screen the core transcription factors. A total of 1 034 genes, including 509 down-regulated genes and 525 up-regulated genes, were selected as DEGs. The up-regulated and down-regulated functional modules based on PPI network included 3 785 and 3 931 genes, respectively. Genes in key functional modules were enriched in cell-substrate junction, chromosomal region, spliceosomal complex and ribosome. They were involved in mRNA processing, histone modification, RNA splicing, regulation of DNA metabolic process, protein phosphorylation and other biological processes. Moreover, they were correlated to transcriptional coregulator activity, DNA-binding transcription factor binding, ubiquitin-like protein ligase binding and other molecular functions. KEGG analysis showed that genes in key functional modules were significantly enriched in hepatitis B, MAPK signaling pathway, cellular senescence and apoptosis, neurotrophin signaling pathway and pathways of neurodegeneration-multiple diseases. The transcriptional regulatory network contained 11 differentially expressed transcription factors and 96 DEGs. Among them, U2AF1, NFRKB, FUS, MAX, SRSF1, CEBPA and RXRA were the core transcription factors, which may facilitate the study of the biological function of relevant molecules in transcriptional regulation of hepatolenticular degeneration.

    参考文献
    [1] Gupta A, Das S, Ray K. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics, 2018, 10(3):378-387.
    [2] Shribman S, Poujois A, Bandmann O, et al. Wilson's disease:update on pathogenesis, biomarkers and treatments. J Neurol Neurosurg Psychiatry, 2021, 92(10):1053-1061.
    [3] Chaudhry HS, Anilkumar AC. Wilson Disease[EB/OL]. (2021-08-11)[2021-11-01] https://www.ncbi.nlm.nih.gov/books/NBK441990/#!po=90.0000
    [4] Li XJ, Zhang W, Zhou DH, et al. Complex ATP7B mutation patterns in Wilson disease and evaluation of a yeast model for functional analysis of variants. Hum Mutat, 2019, 40(5):552-565.
    [5] Ferenci P, Stremmel W, Czlonkowska A, et al. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of Wilson disease. Hepatology, 2019, 69(4):1464-1476.
    [6] Medici V, LaSalle JM. Genetics and epigenetic factors of Wilson disease. Ann Transl Med, 2019, 7(Suppl 2):S58.
    [7] Zhang J, Ma Y, Xie D, et al. Differentially expressed lncRNAs in liver tissues of TX mice with hepatolenticular degeneration. Sci Reports, 2021, 11:1377.
    [8] Meacham KA, Cortés MP, Wiggins EM, et al. Altered zinc balance in the Atp7b–/– mouse reveals a mechanism of copper toxicity in Wilson disease. Metallomics, 2018, 10(11):1595-1606.
    [9] Polishchuk EV, Merolla A, Lichtmannegger J, et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology, 2019, 156(4):1173-1189.e5.
    [10] Ritchie ME, Phipson B, Wu D, et al. Limma Powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015, 43(7):e47.
    [11] Robinson MD, McCarthy DJ, Smyth GK. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2009, 26(1):139-140.
    [12] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12):1-21.
    [13] Yu GC, Wang LG, Han YY, et al. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5):284-287.
    [14] Cheng FX, Kovács IA, Barabási AL. Network-based prediction of drug combination. Nat Commun, 2019, 10(1):1197.
    [15] Zheng RB, Wan CX, Mei SL, et al. Cistrome Data Browser:expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res, 2018, 47(D1):D729-D735.
    [16] Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11):2498-2504.
    [17] Huster D. Wilson disease. Best Pract Res Clin Gastroenterol, 2010, 24(5):531-539.
    [18] Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501):492-496.
    [19] Chopra P, Kanoje V, Semwal A, et al. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs, 2008, 17(10):1411-1425.
    [20] Członkowska A, Litwin T, Chabik G. Wilson disease:neurologic features. Handbook of clinical neurology, 2017, 142:101-119.
    [21] Deng JW, Wang P, Chen XP, et al. FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. PNAS, 2018, 115(41):E9678-E9686.
    [22] Zou ZY, Zhou ZR, Che CH, et al. Genetic epidemiology of amyotrophic lateral sclerosis:a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 2017, 88(7):540-549.
    [23] Liu ZJ, Lin HX, Wei Q, et al. Genetic spectrum and variability in Chinese patients with amyotrophic lateral sclerosis. Aging Dis, 2019, 10(6):1199-1206.
    [24] Malakar P, Shilo A, Mogilevsky A, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res, 2017, 77(5):1155-1167.
    [25] Liu J, You M, Yao Y, et al. SRSF1 plays a critical role in invariant natural killer T cell development and function. Cell Mol Immunol, 2021, 18:2502-2515.
    [26] Sanders JA, Gruppuso PA. Coordinated regulation of c-Myc and Max in rat liver development. Am J Physiol Gastrointest Liver Physiol, 2006, 290(1):G145-G155.
    [27] Peng QY, Zhou MQ, Zuo SR, et al. Nuclear factor related to kappaB binding protein (NFRKB) is a telomere-associated protein and involved in liver cancer development. DNA Cell Biol, 2021, 40(10):1298-1307.
    [28] Iakova P, Awad SS, Timchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell, 2003, 113(4):495-506.
    [29] Huang GC, Zhang JS, Tang QQ. Involvement of C/EBP-alpha gene in in vitro activation of rat hepatic stellate cells. Biochem Biophys Res Commun, 2004, 324(4):1309-1318.
    [30] Fadel L, Rehó B, Volkó J, et al. Agonist binding directs dynamic competition among nuclear receptors for heterodimerization with retinoid X receptor. J Biol Chem, 2020, 295(29):10045-10061.
    [31] Guindi M. Wilson disease. Semin Diagn Pathol, 2019, 36(6):415-422.
    [32] Kim MS, Sweeney TR, Shigenaga JK, et al. Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism, 2007, 56(2):267-279.
    [33] Wooton-Kee CR, Jain AK, Wagner M, et al. Elevated copper impairs hepatic nuclear receptor function in Wilson's disease. J Clin Invest, 2015, 125(9):3449-3460.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晓曦,何松,李潇瑾,周冬虎,伯晓晨,黄坚. 基于转录组的肝豆状核变性调控网络的构建和分析[J]. 生物工程学报, 2022, 38(10): 3844-3858

复制
分享
文章指标
  • 点击次数:334
  • 下载次数: 1405
  • HTML阅读次数: 1489
  • 引用次数: 0
历史
  • 收稿日期:2022-06-25
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第6005881位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司